test_image_processing_imagegpt.py 6.52 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
import tempfile
import unittest

import numpy as np
from datasets import load_dataset

from transformers.testing_utils import require_torch, require_vision, slow
26
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
27

Yih-Dar's avatar
Yih-Dar committed
28
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
NielsRogge's avatar
NielsRogge committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import ImageGPTFeatureExtractor


class ImageGPTFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
50
        size=None,
NielsRogge's avatar
NielsRogge committed
51
52
        do_normalize=True,
    ):
amyeroberts's avatar
amyeroberts committed
53
        size = size if size is not None else {"height": 18, "width": 18}
NielsRogge's avatar
NielsRogge committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize

    def prepare_feat_extract_dict(self):
        return {
            # here we create 2 clusters for the sake of simplicity
            "clusters": np.asarray(
                [
                    [0.8866443634033203, 0.6618829369544983, 0.3891746401786804],
                    [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296],
                ]
            ),
            "do_resize": self.do_resize,
            "size": self.size,
            "do_normalize": self.do_normalize,
        }


@require_torch
@require_vision
class ImageGPTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):

    feature_extraction_class = ImageGPTFeatureExtractor if is_vision_available() else None

    def setUp(self):
        self.feature_extract_tester = ImageGPTFeatureExtractionTester(self)

    @property
    def feat_extract_dict(self):
        return self.feature_extract_tester.prepare_feat_extract_dict()

    def test_feat_extract_properties(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        self.assertTrue(hasattr(feature_extractor, "clusters"))
        self.assertTrue(hasattr(feature_extractor, "do_resize"))
        self.assertTrue(hasattr(feature_extractor, "size"))
        self.assertTrue(hasattr(feature_extractor, "do_normalize"))

99
100
101
102
103
104
105
    def test_feat_extract_from_dict_with_kwargs(self):
        feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict)
        self.assertEqual(feature_extractor.size, {"height": 18, "width": 18})

        feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict, size=42)
        self.assertEqual(feature_extractor.size, {"height": 42, "width": 42})

NielsRogge's avatar
NielsRogge committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    def test_feat_extract_to_json_string(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
        obj = json.loads(feat_extract.to_json_string())
        for key, value in self.feat_extract_dict.items():
            if key == "clusters":
                self.assertTrue(np.array_equal(value, obj[key]))
            else:
                self.assertEqual(obj[key], value)

    def test_feat_extract_to_json_file(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            json_file_path = os.path.join(tmpdirname, "feat_extract.json")
            feat_extract_first.to_json_file(json_file_path)
            feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path).to_dict()

        feat_extract_first = feat_extract_first.to_dict()
        for key, value in feat_extract_first.items():
            if key == "clusters":
                self.assertTrue(np.array_equal(value, feat_extract_second[key]))
            else:
                self.assertEqual(feat_extract_first[key], value)

    def test_feat_extract_from_and_save_pretrained(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            feat_extract_first.save_pretrained(tmpdirname)
            feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname).to_dict()

        feat_extract_first = feat_extract_first.to_dict()
        for key, value in feat_extract_first.items():
            if key == "clusters":
                self.assertTrue(np.array_equal(value, feat_extract_second[key]))
            else:
                self.assertEqual(feat_extract_first[key], value)

    @unittest.skip("ImageGPT requires clusters at initialization")
    def test_init_without_params(self):
        pass


def prepare_images():
    dataset = load_dataset("hf-internal-testing/fixtures_image_utils", split="test")

    image1 = Image.open(dataset[4]["file"])
    image2 = Image.open(dataset[5]["file"])

    images = [image1, image2]

    return images


@require_vision
@require_torch
class ImageGPTFeatureExtractorIntegrationTest(unittest.TestCase):
    @slow
    def test_image(self):
        feature_extractor = ImageGPTFeatureExtractor.from_pretrained("openai/imagegpt-small")

        images = prepare_images()

        # test non-batched
        encoding = feature_extractor(images[0], return_tensors="pt")

172
173
        self.assertIsInstance(encoding.input_ids, torch.LongTensor)
        self.assertEqual(encoding.input_ids.shape, (1, 1024))
NielsRogge's avatar
NielsRogge committed
174
175

        expected_slice = [306, 191, 191]
176
        self.assertEqual(encoding.input_ids[0, :3].tolist(), expected_slice)
NielsRogge's avatar
NielsRogge committed
177
178
179
180

        # test batched
        encoding = feature_extractor(images, return_tensors="pt")

181
182
        self.assertIsInstance(encoding.input_ids, torch.LongTensor)
        self.assertEqual(encoding.input_ids.shape, (2, 1024))
NielsRogge's avatar
NielsRogge committed
183
184

        expected_slice = [303, 13, 13]
185
        self.assertEqual(encoding.input_ids[1, -3:].tolist(), expected_slice)