"vscode:/vscode.git/clone" did not exist on "2a85345a2366d8f4ab6f9d34c11d36dee5b5a614"
test_tf_utils.py 7.08 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow

22
23
from .test_framework_agnostic import GenerationIntegrationTestsMixin

24
25
26
27

if is_tf_available():
    import tensorflow as tf

28
29
30
31
32
33
34
    from transformers import (
        TFAutoModelForCausalLM,
        TFAutoModelForSeq2SeqLM,
        TFLogitsProcessorList,
        TFMinLengthLogitsProcessor,
        tf_top_k_top_p_filtering,
    )
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133


@require_tf
class UtilsFunctionsTest(unittest.TestCase):
    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)


@require_tf
134
135
136
137
class TFGenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin):
    # setting framework_dependent_parameters needs to be gated, just like its contents' imports
    if is_tf_available():
        framework_dependent_parameters = {
138
            "AutoModelForCausalLM": TFAutoModelForCausalLM,
139
            "AutoModelForSeq2SeqLM": TFAutoModelForSeq2SeqLM,
140
141
            "LogitsProcessorList": TFLogitsProcessorList,
            "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor,
142
143
144
145
            "create_tensor_fn": tf.convert_to_tensor,
            "return_tensors": "tf",
        }

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    @slow
    def test_generate_tf_function_export(self):
        test_model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        max_length = 2

        class DummyModel(tf.Module):
            def __init__(self, model):
                super(DummyModel, self).__init__()
                self.model = model

            @tf.function(
                input_signature=(
                    tf.TensorSpec((None, max_length), tf.int32, name="input_ids"),
                    tf.TensorSpec((None, max_length), tf.int32, name="attention_mask"),
                ),
                jit_compile=True,
            )
            def serving(self, input_ids, attention_mask):
                outputs = self.model.generate(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    max_new_tokens=max_length,
                    return_dict_in_generate=True,
                )
                return {"sequences": outputs["sequences"]}

        dummy_input_ids = [[2, 0], [102, 103]]
        dummy_attention_masks = [[1, 0], [1, 1]]
        dummy_model = DummyModel(model=test_model)
        with tempfile.TemporaryDirectory() as tmp_dir:
            tf.saved_model.save(dummy_model, tmp_dir, signatures={"serving_default": dummy_model.serving})
            serving_func = tf.saved_model.load(tmp_dir).signatures["serving_default"]
            for batch_size in range(1, len(dummy_input_ids) + 1):
                inputs = {
                    "input_ids": tf.constant(dummy_input_ids[:batch_size]),
                    "attention_mask": tf.constant(dummy_attention_masks[:batch_size]),
                }
                tf_func_outputs = serving_func(**inputs)["sequences"]
                tf_model_outputs = test_model.generate(**inputs, max_new_tokens=max_length)
                tf.debugging.assert_equal(tf_func_outputs, tf_model_outputs)