run_language_modeling.py 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
LysandreJik's avatar
LysandreJik committed
17
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
18
19
20
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
21
22
23


import logging
Julien Chaumond's avatar
Julien Chaumond committed
24
import math
25
import os
Julien Chaumond's avatar
Julien Chaumond committed
26
27
from dataclasses import dataclass, field
from typing import Optional
28

29
from transformers import (
Julien Chaumond's avatar
Julien Chaumond committed
30
    CONFIG_MAPPING,
31
32
33
34
    MODEL_WITH_LM_HEAD_MAPPING,
    AutoConfig,
    AutoModelWithLMHead,
    AutoTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
35
36
37
    DataCollatorForLanguageModeling,
    HfArgumentParser,
    LineByLineTextDataset,
38
    PreTrainedTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
39
40
41
42
    TextDataset,
    Trainer,
    TrainingArguments,
    set_seed,
43
)
44

45

46
logger = logging.getLogger(__name__)
47
48


49
50
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
51
52


Julien Chaumond's avatar
Julien Chaumond committed
53
54
55
56
57
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """
58

Julien Chaumond's avatar
Julien Chaumond committed
59
60
61
62
    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization. Leave None if you want to train a model from scratch."
63
64
        },
    )
Julien Chaumond's avatar
Julien Chaumond committed
65
66
67
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
68
    )
Julien Chaumond's avatar
Julien Chaumond committed
69
70
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
71
    )
Julien Chaumond's avatar
Julien Chaumond committed
72
73
74
75
76
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
77
    )
78
79


Julien Chaumond's avatar
Julien Chaumond committed
80
81
82
83
84
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
85

Julien Chaumond's avatar
Julien Chaumond committed
86
87
    train_data_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a text file)."}
88
    )
Julien Chaumond's avatar
Julien Chaumond committed
89
    eval_data_file: Optional[str] = field(
90
        default=None,
Julien Chaumond's avatar
Julien Chaumond committed
91
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
Julien Chaumond's avatar
Julien Chaumond committed
92
    )
Julien Chaumond's avatar
Julien Chaumond committed
93
94
95
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
96
97
    )

Julien Chaumond's avatar
Julien Chaumond committed
98
99
    mlm: bool = field(
        default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."}
100
    )
Julien Chaumond's avatar
Julien Chaumond committed
101
102
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
103
104
    )

Julien Chaumond's avatar
Julien Chaumond committed
105
    block_size: int = field(
106
        default=-1,
Julien Chaumond's avatar
Julien Chaumond committed
107
108
109
110
111
        metadata={
            "help": "Optional input sequence length after tokenization."
            "The training dataset will be truncated in block of this size for training."
            "Default to the model max input length for single sentence inputs (take into account special tokens)."
        },
112
    )
Julien Chaumond's avatar
Julien Chaumond committed
113
114
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
115
116
117
    )


Julien Chaumond's avatar
Julien Chaumond committed
118
119
120
def get_dataset(args: DataTrainingArguments, tokenizer: PreTrainedTokenizer, evaluate=False, local_rank=-1):
    file_path = args.eval_data_file if evaluate else args.train_data_file
    if args.line_by_line:
121
        return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
Julien Chaumond's avatar
Julien Chaumond committed
122
    else:
123
        return TextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
124

125

Julien Chaumond's avatar
Julien Chaumond committed
126
127
128
129
130
131
132
133
134
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if data_args.eval_data_file is None and training_args.do_eval:
135
136
137
138
139
140
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )

    if (
Julien Chaumond's avatar
Julien Chaumond committed
141
142
143
144
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
145
146
    ):
        raise ValueError(
Julien Chaumond's avatar
Julien Chaumond committed
147
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
148
        )
149
150

    # Setup logging
151
152
153
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
Julien Chaumond's avatar
Julien Chaumond committed
154
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
155
156
157
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
Julien Chaumond's avatar
Julien Chaumond committed
158
159
160
161
162
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
163
    )
Julien Chaumond's avatar
Julien Chaumond committed
164
    logger.info("Training/evaluation parameters %s", training_args)
165
166

    # Set seed
Julien Chaumond's avatar
Julien Chaumond committed
167
    set_seed(training_args.seed)
168
169

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
170
171
172
173
174
175
176
177
178
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
179
    else:
Julien Chaumond's avatar
Julien Chaumond committed
180
181
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
182

Julien Chaumond's avatar
Julien Chaumond committed
183
184
185
186
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
187
    else:
188
        raise ValueError(
189
190
            "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name"
191
192
        )

Julien Chaumond's avatar
Julien Chaumond committed
193
    if model_args.model_name_or_path:
194
        model = AutoModelWithLMHead.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
195
196
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
197
            config=config,
Julien Chaumond's avatar
Julien Chaumond committed
198
            cache_dir=model_args.cache_dir,
199
200
201
        )
    else:
        logger.info("Training new model from scratch")
202
        model = AutoModelWithLMHead.from_config(config)
203

Julien Chaumond's avatar
Julien Chaumond committed
204
    model.resize_token_embeddings(len(tokenizer))
205

Julien Chaumond's avatar
Julien Chaumond committed
206
207
208
209
210
    if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
        raise ValueError(
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm "
            "flag (masked language modeling)."
        )
211

Julien Chaumond's avatar
Julien Chaumond committed
212
213
214
215
216
    if data_args.block_size <= 0:
        data_args.block_size = tokenizer.max_len
        # Our input block size will be the max possible for the model
    else:
        data_args.block_size = min(data_args.block_size, tokenizer.max_len)
217

Julien Chaumond's avatar
Julien Chaumond committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    # Get datasets
    train_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, local_rank=training_args.local_rank)
        if training_args.do_train
        else None
    )
    eval_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, local_rank=training_args.local_rank, evaluate=True)
        if training_args.do_eval
        else None
    )
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
    )
232

Julien Chaumond's avatar
Julien Chaumond committed
233
234
235
236
237
238
239
240
241
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        prediction_loss_only=True,
    )
242

Julien Chaumond's avatar
Julien Chaumond committed
243
244
245
246
247
248
249
250
251
    # Training
    if training_args.do_train:
        model_path = (
            model_args.model_name_or_path
            if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
            else None
        )
        trainer.train(model_path=model_path)
        trainer.save_model()
252
253
254
255
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)
256

Julien Chaumond's avatar
Julien Chaumond committed
257
258
259
260
    # Evaluation
    results = {}
    if training_args.do_eval and training_args.local_rank in [-1, 0]:
        logger.info("*** Evaluate ***")
261

Julien Chaumond's avatar
Julien Chaumond committed
262
        eval_output = trainer.evaluate()
263

264
        perplexity = math.exp(eval_output["eval_loss"])
Julien Chaumond's avatar
Julien Chaumond committed
265
        result = {"perplexity": perplexity}
266

Julien Chaumond's avatar
Julien Chaumond committed
267
268
269
270
271
272
        output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
273

Julien Chaumond's avatar
Julien Chaumond committed
274
        results.update(result)
275
276
277
278

    return results


279
280
281
282
283
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


284
if __name__ == "__main__":
altsoph's avatar
altsoph committed
285
    main()