run_seq2seq_qa.py 32.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
17
Fine-tuning the library's seq2seq models for question answering using the 馃 Seq2SeqTrainer.
18
19
20
21
22
23
"""
# You can also adapt this script on your own question answering task. Pointers for this are left as comments.

import logging
import os
import sys
24
import warnings
25
26
27
28
from dataclasses import dataclass, field
from typing import List, Optional, Tuple

import datasets
29
import evaluate
30
import numpy as np
31
from datasets import load_dataset
32
from trainer_seq2seq_qa import QuestionAnsweringSeq2SeqTrainer
33
34
35
36
37
38
39
40
41
42
43

import transformers
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
    Seq2SeqTrainingArguments,
    set_seed,
)
44
from transformers.trainer_utils import EvalLoopOutput, EvalPrediction, get_last_checkpoint
45
from transformers.utils import check_min_version, send_example_telemetry
46
47
48
49
from transformers.utils.versions import require_version


# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Arthur Zucker's avatar
Arthur Zucker committed
50
check_min_version("4.39.0.dev0")
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
84
85
    token: str = field(
        default=None,
86
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
87
            "help": (
88
89
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
90
            )
91
92
        },
    )
93
94
95
    use_auth_token: bool = field(
        default=None,
        metadata={
96
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
97
98
        },
    )
99
100
101
102
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
103
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
104
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
105
106
107
108
                "execute code present on the Hub on your local machine."
            )
        },
    )
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    context_column: Optional[str] = field(
        default="context",
        metadata={"help": "The name of the column in the datasets containing the contexts (for question answering)."},
    )
    question_column: Optional[str] = field(
        default="question",
        metadata={"help": "The name of the column in the datasets containing the questions (for question answering)."},
    )
    answer_column: Optional[str] = field(
        default="answers",
        metadata={"help": "The name of the column in the datasets containing the answers (for question answering)."},
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_seq_length: int = field(
        default=384,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
154
155
156
157
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
158
159
160
161
162
        },
    )
    max_answer_length: int = field(
        default=30,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
163
164
165
166
            "help": (
                "The maximum length of an answer that can be generated. This is needed because the start "
                "and end predictions are not conditioned on one another."
            )
167
168
169
170
171
        },
    )
    val_max_answer_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
174
                "than this will be truncated, sequences shorter will be padded. Will default to `max_answer_length`. "
Sylvain Gugger's avatar
Sylvain Gugger committed
175
176
177
                "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
                "during ``evaluate`` and ``predict``."
            )
178
179
180
181
182
        },
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
183
184
185
186
            "help": (
                "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when"
                " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)."
            )
187
188
189
190
191
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
192
193
194
195
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
196
197
198
199
200
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
201
202
203
204
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
205
206
207
208
209
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
210
211
212
213
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
214
215
216
217
218
219
220
221
        },
    )
    version_2_with_negative: bool = field(
        default=False, metadata={"help": "If true, some of the examples do not have an answer."}
    )
    null_score_diff_threshold: float = field(
        default=0.0,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
222
223
224
225
226
            "help": (
                "The threshold used to select the null answer: if the best answer has a score that is less than "
                "the score of the null answer minus this threshold, the null answer is selected for this example. "
                "Only useful when `version_2_with_negative=True`."
            )
227
228
229
230
231
232
233
234
235
236
237
238
239
        },
    )
    doc_stride: int = field(
        default=128,
        metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
    )
    n_best_size: int = field(
        default=20,
        metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
240
241
242
243
            "help": (
                "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
                "which is used during ``evaluate`` and ``predict``."
            )
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        },
    )
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )

    def __post_init__(self):
        if (
            self.dataset_name is None
            and self.train_file is None
            and self.validation_file is None
            and self.test_file is None
        ):
            raise ValueError("Need either a dataset name or a training/validation file/test_file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
            if self.test_file is not None:
                extension = self.test_file.split(".")[-1]
                assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
        if self.val_max_answer_length is None:
            self.val_max_answer_length = self.max_answer_length


question_answering_column_name_mapping = {
    "squad_v2": ("question", "context", "answer"),
}


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

293
    if model_args.use_auth_token is not None:
294
295
296
297
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
298
299
300
301
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

302
303
304
305
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_seq2seq_qa", model_args, data_args)

306
307
308
309
310
311
312
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

313
314
315
316
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

317
318
319
320
321
322
323
324
325
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
326
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
327
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
361
362
363
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
364
            token=model_args.token,
365
366
367
368
369
370
371
372
373
374
375
376
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
377
378
379
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
Sylvain Gugger's avatar
Sylvain Gugger committed
380
            field="data",
381
            cache_dir=model_args.cache_dir,
382
            token=model_args.token,
383
        )
384
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
385
    # https://huggingface.co/docs/datasets/loading_datasets.
386
387
388
389
390
391
392
393
394
395

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
396
        token=model_args.token,
397
        trust_remote_code=model_args.trust_remote_code,
398
399
400
401
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
402
        use_fast=model_args.use_fast_tokenizer,
403
        revision=model_args.model_revision,
404
        token=model_args.token,
405
        trust_remote_code=model_args.trust_remote_code,
406
407
408
409
410
411
412
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
413
        token=model_args.token,
414
        trust_remote_code=model_args.trust_remote_code,
415
416
    )

417
418
419
420
421
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

    # Preprocessing the datasets.
    # We need to generate and tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    elif training_args.do_predict:
        column_names = raw_datasets["test"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return

    # Get the column names for input/target.
    dataset_columns = question_answering_column_name_mapping.get(data_args.dataset_name, None)
    if data_args.question_column is None:
        question_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        question_column = data_args.question_column
        if question_column not in column_names:
            raise ValueError(
                f"--question_column' value '{data_args.question_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.context_column is None:
        context_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        context_column = data_args.context_column
        if context_column not in column_names:
            raise ValueError(
                f"--context_column' value '{data_args.context_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.answer_column is None:
        answer_column = dataset_columns[2] if dataset_columns is not None else column_names[2]
    else:
        answer_column = data_args.answer_column
        if answer_column not in column_names:
            raise ValueError(
                f"--answer_column' value '{data_args.answer_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Temporarily set max_answer_length for training.
    max_answer_length = data_args.max_answer_length
    padding = "max_length" if data_args.pad_to_max_length else False

    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
        logger.warning(
471
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for "
472
473
474
475
476
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
477
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the "
478
479
480
481
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

482
    def preprocess_squad_batch(
483
484
485
486
487
488
489
490
491
492
        examples,
        question_column: str,
        context_column: str,
        answer_column: str,
    ) -> Tuple[List[str], List[str]]:
        questions = examples[question_column]
        contexts = examples[context_column]
        answers = examples[answer_column]

        def generate_input(_question, _context):
493
            return " ".join(["question:", _question.lstrip(), "context:", _context.lstrip()])
494
495
496
497
498
499

        inputs = [generate_input(question, context) for question, context in zip(questions, contexts)]
        targets = [answer["text"][0] if len(answer["text"]) > 0 else "" for answer in answers]
        return inputs, targets

    def preprocess_function(examples):
500
        inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column)
501
502

        model_inputs = tokenizer(inputs, max_length=max_seq_length, padding=padding, truncation=True)
503
504
        # Tokenize targets with text_target=...
        labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True)
505
506
507
508
509
510
511
512
513
514
515

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

516
517
518
519
520
521
522
523
524
    # Validation preprocessing
    def preprocess_validation_function(examples):
        inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column)

        model_inputs = tokenizer(
            inputs,
            max_length=max_seq_length,
            padding=padding,
            truncation=True,
525
            return_overflowing_tokens=True,
526
            return_offsets_mapping=True,
527
        )
528
529
        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True)
530

531
532
533
534
535
536
537
        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

538
539
540
541
542
543
544
        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = model_inputs.pop("overflow_to_sample_mapping")

        # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
        # corresponding example_id and we will store the offset mappings.
        model_inputs["example_id"] = []
545
546
        # Augment the overflowing tokens to the labels
        labels_out = []
547
548
549
550
551

        for i in range(len(model_inputs["input_ids"])):
            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            model_inputs["example_id"].append(examples["id"][sample_index])
552
            labels_out.append(labels["input_ids"][sample_index])
553

554
        model_inputs["labels"] = labels_out
555
556
        return model_inputs

557
558
559
560
561
    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
562
            # We will select sample from whole data if argument is specified
563
564
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
565
566
567
568
569
570
571
572
573
574
575
576
        # Create train feature from dataset
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
        if data_args.max_train_samples is not None:
            # Number of samples might increase during Feature Creation, We select only specified max samples
577
578
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
579
580
581
582
583
584
585

    if training_args.do_eval:
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_examples = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            # We will select sample from whole data
586
587
            max_eval_samples = min(len(eval_examples), data_args.max_eval_samples)
            eval_examples = eval_examples.select(range(max_eval_samples))
588
589
590
        # Validation Feature Creation
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_examples.map(
591
                preprocess_validation_function,
592
593
594
595
596
597
598
599
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
        if data_args.max_eval_samples is not None:
            # During Feature creation dataset samples might increase, we will select required samples again
600
601
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
602
603
604
605
606
607
608
609
610
611
612

    if training_args.do_predict:
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_examples = raw_datasets["test"]
        if data_args.max_predict_samples is not None:
            # We will select sample from whole data
            predict_examples = predict_examples.select(range(data_args.max_predict_samples))
        # Predict Feature Creation
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_examples.map(
613
                preprocess_validation_function,
614
615
616
617
618
619
620
621
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
        if data_args.max_predict_samples is not None:
            # During Feature creation dataset samples might increase, we will select required samples again
622
623
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
624
625
626
627
628
629
630
631
632
633

    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )

634
635
636
    metric = evaluate.load(
        "squad_v2" if data_args.version_2_with_negative else "squad", cache_dir=model_args.cache_dir
    )
637

638
639
    def compute_metrics(p: EvalPrediction):
        return metric.compute(predictions=p.predictions, references=p.label_ids)
640

641
642
643
644
645
646
    # Post-processing:
    def post_processing_function(
        examples: datasets.Dataset, features: datasets.Dataset, outputs: EvalLoopOutput, stage="eval"
    ):
        # Decode the predicted tokens.
        preds = outputs.predictions
647
648
        if isinstance(preds, tuple):
            preds = preds[0]
649
650
        # Replace -100s used for padding as we can't decode them
        preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

        # Build a map example to its corresponding features.
        example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
        feature_per_example = {example_id_to_index[feature["example_id"]]: i for i, feature in enumerate(features)}
        predictions = {}
        # Let's loop over all the examples!
        for example_index, example in enumerate(examples):
            # This is the index of the feature associated to the current example.
            feature_index = feature_per_example[example_index]
            predictions[example["id"]] = decoded_preds[feature_index]

        # Format the result to the format the metric expects.
        if data_args.version_2_with_negative:
            formatted_predictions = [
                {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
            ]
        else:
            formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]

        references = [{"id": ex["id"], "answers": ex[answer_column]} for ex in examples]
        return EvalPrediction(predictions=formatted_predictions, label_ids=references)
673
674

    # Initialize our Trainer
675
    trainer = QuestionAnsweringSeq2SeqTrainer(
676
677
678
679
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
680
        eval_examples=eval_examples if training_args.do_eval else None,
681
682
        tokenizer=tokenizer,
        data_collator=data_collator,
683
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
684
        post_process_function=post_processing_function,
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    max_length = (
        training_args.generation_max_length
        if training_args.generation_max_length is not None
        else data_args.val_max_answer_length
    )
    num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")

        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
        results = trainer.predict(predict_dataset, predict_examples)
        metrics = results.metrics

        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

    if training_args.push_to_hub:
        kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"}
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name

        trainer.push_to_hub(**kwargs)


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()