run_squad.py 40.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run BERT on SQuAD."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import argparse
thomwolf's avatar
thomwolf committed
22
import collections
23
import logging
thomwolf's avatar
thomwolf committed
24
25
26
import json
import math
import os
27
import random
thomwolf's avatar
thomwolf committed
28
import six
thomwolf's avatar
thomwolf committed
29
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
30

thomwolf's avatar
thomwolf committed
31
import numpy as np
32
33
34
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
35

36
37
38
import tokenization
from modeling import BertConfig, BertForQuestionAnswering
from optimization import BERTAdam
thomwolf's avatar
thomwolf committed
39

40
41
42
43
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s', 
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
thomwolf's avatar
thomwolf committed
44
45
46


class SquadExample(object):
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    """A single training/test example for simple sequence classification."""

    def __init__(self,
                 qas_id,
                 question_text,
                 doc_tokens,
                 orig_answer_text=None,
                 start_position=None,
                 end_position=None):
        self.qas_id = qas_id
        self.question_text = question_text
        self.doc_tokens = doc_tokens
        self.orig_answer_text = orig_answer_text
        self.start_position = start_position
        self.end_position = end_position

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        s = ""
        s += "qas_id: %s" % (tokenization.printable_text(self.qas_id))
        s += ", question_text: %s" % (
            tokenization.printable_text(self.question_text))
        s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
        if self.start_position:
            s += ", start_position: %d" % (self.start_position)
        if self.start_position:
            s += ", end_position: %d" % (self.end_position)
        return s
thomwolf's avatar
thomwolf committed
77
78
79


class InputFeatures(object):
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    """A single set of features of data."""

    def __init__(self,
                 unique_id,
                 example_index,
                 doc_span_index,
                 tokens,
                 token_to_orig_map,
                 token_is_max_context,
                 input_ids,
                 input_mask,
                 segment_ids,
                 start_position=None,
                 end_position=None):
        self.unique_id = unique_id
        self.example_index = example_index
        self.doc_span_index = doc_span_index
        self.tokens = tokens
        self.token_to_orig_map = token_to_orig_map
        self.token_is_max_context = token_is_max_context
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.start_position = start_position
        self.end_position = end_position
thomwolf's avatar
thomwolf committed
105
106
107


def read_squad_examples(input_file, is_training):
108
    """Read a SQuAD json file into a list of SquadExample."""
109
    with open(input_file, "r") as reader:
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        input_data = json.load(reader)["data"]

    def is_whitespace(c):
        if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
            return True
        return False

    examples = []
    for entry in input_data:
        for paragraph in entry["paragraphs"]:
            paragraph_text = paragraph["context"]
            doc_tokens = []
            char_to_word_offset = []
            prev_is_whitespace = True
            for c in paragraph_text:
                if is_whitespace(c):
                    prev_is_whitespace = True
                else:
                    if prev_is_whitespace:
                        doc_tokens.append(c)
                    else:
                        doc_tokens[-1] += c
                    prev_is_whitespace = False
                char_to_word_offset.append(len(doc_tokens) - 1)

            for qa in paragraph["qas"]:
                qas_id = qa["id"]
                question_text = qa["question"]
                start_position = None
                end_position = None
                orig_answer_text = None
                if is_training:
                    if len(qa["answers"]) != 1:
                        raise ValueError(
                            "For training, each question should have exactly 1 answer.")
                    answer = qa["answers"][0]
                    orig_answer_text = answer["text"]
                    answer_offset = answer["answer_start"]
                    answer_length = len(orig_answer_text)
                    start_position = char_to_word_offset[answer_offset]
                    end_position = char_to_word_offset[answer_offset + answer_length - 1]
                    # Only add answers where the text can be exactly recovered from the
                    # document. If this CAN'T happen it's likely due to weird Unicode
                    # stuff so we will just skip the example.
                    #
                    # Note that this means for training mode, every example is NOT
                    # guaranteed to be preserved.
                    actual_text = " ".join(doc_tokens[start_position:(end_position + 1)])
                    cleaned_answer_text = " ".join(
                        tokenization.whitespace_tokenize(orig_answer_text))
                    if actual_text.find(cleaned_answer_text) == -1:
161
                        logger.warning("Could not find answer: '%s' vs. '%s'",
162
163
164
165
166
167
168
169
170
171
172
173
                                           actual_text, cleaned_answer_text)
                        continue

                example = SquadExample(
                    qas_id=qas_id,
                    question_text=question_text,
                    doc_tokens=doc_tokens,
                    orig_answer_text=orig_answer_text,
                    start_position=start_position,
                    end_position=end_position)
                examples.append(example)
    return examples
thomwolf's avatar
thomwolf committed
174
175
176
177


def convert_examples_to_features(examples, tokenizer, max_seq_length,
                                 doc_stride, max_query_length, is_training):
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    """Loads a data file into a list of `InputBatch`s."""

    unique_id = 1000000000

    features = []
    for (example_index, example) in enumerate(examples):
        query_tokens = tokenizer.tokenize(example.question_text)

        if len(query_tokens) > max_query_length:
            query_tokens = query_tokens[0:max_query_length]

        tok_to_orig_index = []
        orig_to_tok_index = []
        all_doc_tokens = []
        for (i, token) in enumerate(example.doc_tokens):
            orig_to_tok_index.append(len(all_doc_tokens))
            sub_tokens = tokenizer.tokenize(token)
            for sub_token in sub_tokens:
                tok_to_orig_index.append(i)
                all_doc_tokens.append(sub_token)

        tok_start_position = None
        tok_end_position = None
thomwolf's avatar
thomwolf committed
201
        if is_training:
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
            tok_start_position = orig_to_tok_index[example.start_position]
            if example.end_position < len(example.doc_tokens) - 1:
                tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
            else:
                tok_end_position = len(all_doc_tokens) - 1
            (tok_start_position, tok_end_position) = _improve_answer_span(
                all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
                example.orig_answer_text)

        # The -3 accounts for [CLS], [SEP] and [SEP]
        max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

        # We can have documents that are longer than the maximum sequence length.
        # To deal with this we do a sliding window approach, where we take chunks
        # of the up to our max length with a stride of `doc_stride`.
        _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
            "DocSpan", ["start", "length"])
        doc_spans = []
        start_offset = 0
        while start_offset < len(all_doc_tokens):
            length = len(all_doc_tokens) - start_offset
            if length > max_tokens_for_doc:
                length = max_tokens_for_doc
            doc_spans.append(_DocSpan(start=start_offset, length=length))
            if start_offset + length == len(all_doc_tokens):
                break
            start_offset += min(length, doc_stride)

        for (doc_span_index, doc_span) in enumerate(doc_spans):
            tokens = []
            token_to_orig_map = {}
            token_is_max_context = {}
            segment_ids = []
            tokens.append("[CLS]")
            segment_ids.append(0)
            for token in query_tokens:
                tokens.append(token)
                segment_ids.append(0)
            tokens.append("[SEP]")
            segment_ids.append(0)

            for i in range(doc_span.length):
                split_token_index = doc_span.start + i
                token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]

                is_max_context = _check_is_max_context(doc_spans, doc_span_index,
                                                       split_token_index)
                token_is_max_context[len(tokens)] = is_max_context
                tokens.append(all_doc_tokens[split_token_index])
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)

            # The mask has 1 for real tokens and 0 for padding tokens. Only real
            # tokens are attended to.
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            while len(input_ids) < max_seq_length:
                input_ids.append(0)
                input_mask.append(0)
                segment_ids.append(0)

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            start_position = None
            end_position = None
            if is_training:
                # For training, if our document chunk does not contain an annotation
                # we throw it out, since there is nothing to predict.
                doc_start = doc_span.start
                doc_end = doc_span.start + doc_span.length - 1
                if (example.start_position < doc_start or
                        example.end_position < doc_start or
                        example.start_position > doc_end or example.end_position > doc_end):
                    continue

                doc_offset = len(query_tokens) + 2
                start_position = tok_start_position - doc_start + doc_offset
                end_position = tok_end_position - doc_start + doc_offset

            if example_index < 20:
288
289
290
291
292
                logger.info("*** Example ***")
                logger.info("unique_id: %s" % (unique_id))
                logger.info("example_index: %s" % (example_index))
                logger.info("doc_span_index: %s" % (doc_span_index))
                logger.info("tokens: %s" % " ".join(
293
                    [tokenization.printable_text(x) for x in tokens]))
294
                logger.info("token_to_orig_map: %s" % " ".join(
295
                    ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)]))
296
                logger.info("token_is_max_context: %s" % " ".join([
297
298
                    "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
                ]))
299
300
                logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
                logger.info(
301
                    "input_mask: %s" % " ".join([str(x) for x in input_mask]))
302
                logger.info(
303
304
305
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
                if is_training:
                    answer_text = " ".join(tokens[start_position:(end_position + 1)])
306
307
308
                    logger.info("start_position: %d" % (start_position))
                    logger.info("end_position: %d" % (end_position))
                    logger.info(
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
                        "answer: %s" % (tokenization.printable_text(answer_text)))

            features.append(
                InputFeatures(
                    unique_id=unique_id,
                    example_index=example_index,
                    doc_span_index=doc_span_index,
                    tokens=tokens,
                    token_to_orig_map=token_to_orig_map,
                    token_is_max_context=token_is_max_context,
                    input_ids=input_ids,
                    input_mask=input_mask,
                    segment_ids=segment_ids,
                    start_position=start_position,
                    end_position=end_position))
            unique_id += 1

    return features
thomwolf's avatar
thomwolf committed
327
328
329
330


def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
                         orig_answer_text):
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    """Returns tokenized answer spans that better match the annotated answer."""

    # The SQuAD annotations are character based. We first project them to
    # whitespace-tokenized words. But then after WordPiece tokenization, we can
    # often find a "better match". For example:
    #
    #   Question: What year was John Smith born?
    #   Context: The leader was John Smith (1895-1943).
    #   Answer: 1895
    #
    # The original whitespace-tokenized answer will be "(1895-1943).". However
    # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
    # the exact answer, 1895.
    #
    # However, this is not always possible. Consider the following:
    #
    #   Question: What country is the top exporter of electornics?
    #   Context: The Japanese electronics industry is the lagest in the world.
    #   Answer: Japan
    #
    # In this case, the annotator chose "Japan" as a character sub-span of
    # the word "Japanese". Since our WordPiece tokenizer does not split
    # "Japanese", we just use "Japanese" as the annotation. This is fairly rare
    # in SQuAD, but does happen.
    tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))

    for new_start in range(input_start, input_end + 1):
        for new_end in range(input_end, new_start - 1, -1):
            text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
            if text_span == tok_answer_text:
                return (new_start, new_end)

    return (input_start, input_end)
thomwolf's avatar
thomwolf committed
364
365
366


def _check_is_max_context(doc_spans, cur_span_index, position):
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    """Check if this is the 'max context' doc span for the token."""

    # Because of the sliding window approach taken to scoring documents, a single
    # token can appear in multiple documents. E.g.
    #  Doc: the man went to the store and bought a gallon of milk
    #  Span A: the man went to the
    #  Span B: to the store and bought
    #  Span C: and bought a gallon of
    #  ...
    #
    # Now the word 'bought' will have two scores from spans B and C. We only
    # want to consider the score with "maximum context", which we define as
    # the *minimum* of its left and right context (the *sum* of left and
    # right context will always be the same, of course).
    #
    # In the example the maximum context for 'bought' would be span C since
    # it has 1 left context and 3 right context, while span B has 4 left context
    # and 0 right context.
    best_score = None
    best_span_index = None
    for (span_index, doc_span) in enumerate(doc_spans):
        end = doc_span.start + doc_span.length - 1
        if position < doc_span.start:
            continue
        if position > end:
            continue
        num_left_context = position - doc_span.start
        num_right_context = end - position
        score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
        if best_score is None or score > best_score:
            best_score = score
            best_span_index = span_index

    return cur_span_index == best_span_index
thomwolf's avatar
thomwolf committed
401
402
403
404
405
406
407
408
409



RawResult = collections.namedtuple("RawResult",
                                   ["unique_id", "start_logits", "end_logits"])


def write_predictions(all_examples, all_features, all_results, n_best_size,
                      max_answer_length, do_lower_case, output_prediction_file,
thomwolf's avatar
thomwolf committed
410
                      output_nbest_file, verbose_logging):
411
    """Write final predictions to the json file."""
412
413
    logger.info("Writing predictions to: %s" % (output_prediction_file))
    logger.info("Writing nbest to: %s" % (output_nbest_file))
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction",
        ["feature_index", "start_index", "end_index", "start_logit", "end_logit"])

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
    for (example_index, example) in enumerate(all_examples):
        features = example_index_to_features[example_index]

        prelim_predictions = []
        for (feature_index, feature) in enumerate(features):
            result = unique_id_to_result[feature.unique_id]

            start_indexes = _get_best_indexes(result.start_logits, n_best_size)
            end_indexes = _get_best_indexes(result.end_logits, n_best_size)
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # We could hypothetically create invalid predictions, e.g., predict
                    # that the start of the span is in the question. We throw out all
                    # invalid predictions.
                    if start_index >= len(feature.tokens):
                        continue
                    if end_index >= len(feature.tokens):
                        continue
                    if start_index not in feature.token_to_orig_map:
                        continue
                    if end_index not in feature.token_to_orig_map:
                        continue
                    if not feature.token_is_max_context.get(start_index, False):
                        continue
                    if end_index < start_index:
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:
                        continue
                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,
                            start_index=start_index,
                            end_index=end_index,
                            start_logit=result.start_logits[start_index],
                            end_logit=result.end_logits[end_index]))

        prelim_predictions = sorted(
            prelim_predictions,
            key=lambda x: (x.start_logit + x.end_logit),
            reverse=True)

        _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
            "NbestPrediction", ["text", "start_logit", "end_logit"])

        seen_predictions = {}
        nbest = []
        for pred in prelim_predictions:
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]

            tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
            orig_doc_start = feature.token_to_orig_map[pred.start_index]
            orig_doc_end = feature.token_to_orig_map[pred.end_index]
            orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
            tok_text = " ".join(tok_tokens)

            # De-tokenize WordPieces that have been split off.
            tok_text = tok_text.replace(" ##", "")
            tok_text = tok_text.replace("##", "")

            # Clean whitespace
            tok_text = tok_text.strip()
            tok_text = " ".join(tok_text.split())
            orig_text = " ".join(orig_tokens)

thomwolf's avatar
thomwolf committed
496
            final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
            if final_text in seen_predictions:
                continue

            seen_predictions[final_text] = True
            nbest.append(
                _NbestPrediction(
                    text=final_text,
                    start_logit=pred.start_logit,
                    end_logit=pred.end_logit))

        # In very rare edge cases we could have no valid predictions. So we
        # just create a nonce prediction in this case to avoid failure.
        if not nbest:
            nbest.append(
                _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))

        assert len(nbest) >= 1

        total_scores = []
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)

        probs = _compute_softmax(total_scores)

        nbest_json = []
        for (i, entry) in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_logit"] = entry.start_logit
            output["end_logit"] = entry.end_logit
            nbest_json.append(output)

        assert len(nbest_json) >= 1

        all_predictions[example.qas_id] = nbest_json[0]["text"]
        all_nbest_json[example.qas_id] = nbest_json

535
    with open(output_prediction_file, "w") as writer:
536
537
        writer.write(json.dumps(all_predictions, indent=4) + "\n")

538
    with open(output_nbest_file, "w") as writer:
539
        writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
thomwolf's avatar
thomwolf committed
540
541


thomwolf's avatar
thomwolf committed
542
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    """Project the tokenized prediction back to the original text."""

    # When we created the data, we kept track of the alignment between original
    # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
    # now `orig_text` contains the span of our original text corresponding to the
    # span that we predicted.
    #
    # However, `orig_text` may contain extra characters that we don't want in
    # our prediction.
    #
    # For example, let's say:
    #   pred_text = steve smith
    #   orig_text = Steve Smith's
    #
    # We don't want to return `orig_text` because it contains the extra "'s".
    #
    # We don't want to return `pred_text` because it's already been normalized
    # (the SQuAD eval script also does punctuation stripping/lower casing but
    # our tokenizer does additional normalization like stripping accent
    # characters).
    #
    # What we really want to return is "Steve Smith".
    #
    # Therefore, we have to apply a semi-complicated alignment heruistic between
    # `pred_text` and `orig_text` to get a character-to-charcter alignment. This
    # can fail in certain cases in which case we just return `orig_text`.

    def _strip_spaces(text):
        ns_chars = []
        ns_to_s_map = collections.OrderedDict()
        for (i, c) in enumerate(text):
            if c == " ":
                continue
            ns_to_s_map[len(ns_chars)] = i
            ns_chars.append(c)
        ns_text = "".join(ns_chars)
        return (ns_text, ns_to_s_map)

    # We first tokenize `orig_text`, strip whitespace from the result
    # and `pred_text`, and check if they are the same length. If they are
    # NOT the same length, the heuristic has failed. If they are the same
    # length, we assume the characters are one-to-one aligned.
    tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)

    tok_text = " ".join(tokenizer.tokenize(orig_text))

    start_position = tok_text.find(pred_text)
    if start_position == -1:
thomwolf's avatar
thomwolf committed
591
        if verbose_logging:
592
            logger.info(
593
594
595
596
597
598
599
600
                "Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
        return orig_text
    end_position = start_position + len(pred_text) - 1

    (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
    (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

    if len(orig_ns_text) != len(tok_ns_text):
thomwolf's avatar
thomwolf committed
601
        if verbose_logging:
602
            logger.info("Length not equal after stripping spaces: '%s' vs '%s'",
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
                            orig_ns_text, tok_ns_text)
        return orig_text

    # We then project the characters in `pred_text` back to `orig_text` using
    # the character-to-character alignment.
    tok_s_to_ns_map = {}
    for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
        tok_s_to_ns_map[tok_index] = i

    orig_start_position = None
    if start_position in tok_s_to_ns_map:
        ns_start_position = tok_s_to_ns_map[start_position]
        if ns_start_position in orig_ns_to_s_map:
            orig_start_position = orig_ns_to_s_map[ns_start_position]

    if orig_start_position is None:
thomwolf's avatar
thomwolf committed
619
        if verbose_logging:
620
            logger.info("Couldn't map start position")
621
622
623
624
625
626
627
628
629
        return orig_text

    orig_end_position = None
    if end_position in tok_s_to_ns_map:
        ns_end_position = tok_s_to_ns_map[end_position]
        if ns_end_position in orig_ns_to_s_map:
            orig_end_position = orig_ns_to_s_map[ns_end_position]

    if orig_end_position is None:
thomwolf's avatar
thomwolf committed
630
        if verbose_logging:
631
            logger.info("Couldn't map end position")
632
633
634
635
        return orig_text

    output_text = orig_text[orig_start_position:(orig_end_position + 1)]
    return output_text
thomwolf's avatar
thomwolf committed
636
637
638


def _get_best_indexes(logits, n_best_size):
639
640
    """Get the n-best logits from a list."""
    index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
thomwolf's avatar
thomwolf committed
641

642
643
644
645
646
647
    best_indexes = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indexes.append(index_and_score[i][0])
    return best_indexes
thomwolf's avatar
thomwolf committed
648
649
650


def _compute_softmax(scores):
651
652
653
    """Compute softmax probability over raw logits."""
    if not scores:
        return []
thomwolf's avatar
thomwolf committed
654

655
656
657
658
    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score
thomwolf's avatar
thomwolf committed
659

660
661
662
663
664
665
    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x
thomwolf's avatar
thomwolf committed
666

667
668
669
670
    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs
thomwolf's avatar
thomwolf committed
671
672


673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--bert_config_file", default=None, type=str, required=True,
                        help="The config json file corresponding to the pre-trained BERT model. "
                             "This specifies the model architecture.")
    parser.add_argument("--vocab_file", default=None, type=str, required=True,
                        help="The vocabulary file that the BERT model was trained on.")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--init_checkpoint", default=None, type=str,
                        help="Initial checkpoint (usually from a pre-trained BERT model).")
    parser.add_argument("--do_lower_case", default=True, action='store_true',
                        help="Whether to lower case the input text. Should be True for uncased "
                             "models and False for cased models.")
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
    parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.")
    parser.add_argument("--do_predict", default=False, action='store_true', help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
                             "of training.")
    parser.add_argument("--save_checkpoints_steps", default=1000, type=int,
                        help="How often to save the model checkpoint.")
    parser.add_argument("--iterations_per_loop", default=1000, type=int,
                        help="How many steps to make in each estimator call.")
    parser.add_argument("--n_best_size", default=20, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")

    parser.add_argument("--verbose_logging", default=False, action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
734
735
736
737
    parser.add_argument("--accumulate_gradients",
                        type=int,
                        default=1,
                        help="Number of steps to accumulate gradient on (divide the batch_size and accumulate)")
738
    parser.add_argument('--seed', 
thomwolf's avatar
thomwolf committed
739
740
741
                        type=int, 
                        default=42,
                        help="random seed for initialization")
742
743
744
745
746
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumualte before performing a backward/update pass.")
    
747
748
749
750
751
752
753
754
    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
755
756
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
757
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
thomwolf's avatar
thomwolf committed
758
759
760
761
762

    if args.accumulate_gradients < 1:
        raise ValueError("Invalid accumulate_gradients parameter: {}, should be >= 1".format(
                            args.accumulate_gradients))

763
    args.train_batch_size = int(args.train_batch_size / args.accumulate_gradients)
764
765
766
767

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
768
769
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
770
771

    if not args.do_train and not args.do_predict:
772
773
        raise ValueError("At least one of `do_train` or `do_predict` must be True.")

774
775
    if args.do_train:
        if not args.train_file:
776
777
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
778
779
    if args.do_predict:
        if not args.predict_file:
780
781
782
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified.")

783
    bert_config = BertConfig.from_json_file(args.bert_config_file)
784

785
    if args.max_seq_length > bert_config.max_position_embeddings:
786
787
788
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
789
            (args.max_seq_length, bert_config.max_position_embeddings))
790

791
792
793
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError("Output directory () already exists and is not empty.")
    os.makedirs(args.output_dir, exist_ok=True)
794
795

    tokenizer = tokenization.FullTokenizer(
796
        vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)
797
798
799

    train_examples = None
    num_train_steps = None
800
    if args.do_train:
801
        train_examples = read_squad_examples(
802
            input_file=args.train_file, is_training=True)
803
        num_train_steps = int(
804
805
806
807
808
809
            len(train_examples) / args.train_batch_size * args.num_train_epochs)

    model = BertForQuestionAnswering(bert_config)
    if args.init_checkpoint is not None:
        model.bert.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
    model.to(device)
thomwolf's avatar
thomwolf committed
810
811
812
813
814

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank)
    elif n_gpu > 1:
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
        model = torch.nn.DataParallel(model)

    no_decay = ['bias', 'gamma', 'beta']
    optimizer_parameters = [
        {'params': [p for n, p in model.named_parameters() if n not in no_decay], 'weight_decay_rate': 0.01},
        {'params': [p for n, p in model.named_parameters() if n in no_decay], 'weight_decay_rate': 0.0}
        ]

    optimizer = BERTAdam(optimizer_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=num_train_steps)

    global_step = 0
    if args.do_train:
830
831
832
        train_features = convert_examples_to_features(
            examples=train_examples,
            tokenizer=tokenizer,
833
834
835
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
836
            is_training=True)
837
838
839
840
841
842
843
844
845
846
847
848
        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)

thomwolf's avatar
thomwolf committed
849
850
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                   all_start_positions, all_end_positions)
851
852
853
854
855
856
857
858
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
thomwolf's avatar
thomwolf committed
859
860
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
861
                input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
862
                input_mask = input_mask.to(device)
863
864
865
                segment_ids = segment_ids.to(device)
                start_positions = start_positions.to(device)
                end_positions = start_positions.to(device)
thomwolf's avatar
thomwolf committed
866

867
868
                start_positions = start_positions.view(-1, 1)
                end_positions = end_positions.view(-1, 1)
thomwolf's avatar
thomwolf committed
869

870
                loss, _ = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
thomwolf's avatar
thomwolf committed
871
872
873
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.

874
                loss.backward()
thomwolf's avatar
thomwolf committed
875
876
877
878
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()    # We have accumulated enought gradients
                    model.zero_grad()
                    global_step += 1
879
880

    if args.do_predict:
881
        eval_examples = read_squad_examples(
882
            input_file=args.predict_file, is_training=False)
883
884
885
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
886
887
888
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
889
890
            is_training=False)

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)

        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
        if args.local_rank == -1:
            eval_sampler = SequentialSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)
907

908
        model.eval()
909
        all_results = []
thomwolf's avatar
thomwolf committed
910
        logger.info("Start evaluating")
thomwolf's avatar
thomwolf committed
911
        for input_ids, input_mask, segment_ids, example_index in tqdm(eval_dataloader, desc="Evaluating"):
912
            if len(all_results) % 1000 == 0:
913
914
915
                logger.info("Processing example: %d" % (len(all_results)))

            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
916
            input_mask = input_mask.to(device)
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
            segment_ids = segment_ids.to(device)

            start_logits, end_logits = model(input_ids, segment_ids, input_mask)

            unique_id = [int(eval_features[e.item()].unique_id) for e in example_index]
            start_logits = [x.view(-1).detach().cpu().numpy() for x in start_logits]
            end_logits = [x.view(-1).detach().cpu().numpy() for x in end_logits]
            for idx, i in enumerate(unique_id):
                s = [float(x) for x in start_logits[idx]]
                e = [float(x) for x in end_logits[idx]]
                all_results.append(
                    RawResult(
                        unique_id=i,
                        start_logits=s,
                        end_logits=e
                    )
                )

        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
937
        write_predictions(eval_examples, eval_features, all_results,
938
939
                          args.n_best_size, args.max_answer_length,
                          args.do_lower_case, output_prediction_file,
thomwolf's avatar
thomwolf committed
940
                          output_nbest_file, args.verbose_logging)
thomwolf's avatar
thomwolf committed
941
942
943


if __name__ == "__main__":
944
    main()