utils.py 4.17 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
VictorSanh's avatar
VictorSanh committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
15
16
""" Utils to train DistilBERT
    adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
VictorSanh's avatar
VictorSanh committed
17
"""
VictorSanh's avatar
VictorSanh committed
18
import json
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import logging
VictorSanh's avatar
VictorSanh committed
20
21
import os
import socket
Aymeric Augustin's avatar
Aymeric Augustin committed
22

VictorSanh's avatar
VictorSanh committed
23
import numpy as np
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25
26
import torch

import git
VictorSanh's avatar
VictorSanh committed
27

28
29
30
31
32
33

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d -  %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)
VictorSanh's avatar
VictorSanh committed
34
35
36
37
38
39
40
41
42
logger = logging.getLogger(__name__)


def git_log(folder_path: str):
    """
    Log commit info.
    """
    repo = git.Repo(search_parent_directories=True)
    repo_infos = {
43
44
45
        "repo_id": str(repo),
        "repo_sha": str(repo.head.object.hexsha),
        "repo_branch": str(repo.active_branch),
VictorSanh's avatar
VictorSanh committed
46
47
    }

48
    with open(os.path.join(folder_path, "git_log.json"), "w") as f:
VictorSanh's avatar
VictorSanh committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        json.dump(repo_infos, f, indent=4)


def init_gpu_params(params):
    """
    Handle single and multi-GPU / multi-node.
    """
    if params.n_gpu <= 0:
        params.local_rank = 0
        params.master_port = -1
        params.is_master = True
        params.multi_gpu = False
        return

    assert torch.cuda.is_available()

65
    logger.info("Initializing GPUs")
VictorSanh's avatar
VictorSanh committed
66
67
68
    if params.n_gpu > 1:
        assert params.local_rank != -1

69
70
71
        params.world_size = int(os.environ["WORLD_SIZE"])
        params.n_gpu_per_node = int(os.environ["N_GPU_NODE"])
        params.global_rank = int(os.environ["RANK"])
VictorSanh's avatar
VictorSanh committed
72
73
74
75
76
77

        # number of nodes / node ID
        params.n_nodes = params.world_size // params.n_gpu_per_node
        params.node_id = params.global_rank // params.n_gpu_per_node
        params.multi_gpu = True

78
79
        assert params.n_nodes == int(os.environ["N_NODES"])
        assert params.node_id == int(os.environ["NODE_RANK"])
VictorSanh's avatar
VictorSanh committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

    # local job (single GPU)
    else:
        assert params.local_rank == -1

        params.n_nodes = 1
        params.node_id = 0
        params.local_rank = 0
        params.global_rank = 0
        params.world_size = 1
        params.n_gpu_per_node = 1
        params.multi_gpu = False

    # sanity checks
    assert params.n_nodes >= 1
    assert 0 <= params.node_id < params.n_nodes
    assert 0 <= params.local_rank <= params.global_rank < params.world_size
    assert params.world_size == params.n_nodes * params.n_gpu_per_node

    # define whether this is the master process / if we are in multi-node distributed mode
    params.is_master = params.node_id == 0 and params.local_rank == 0
    params.multi_node = params.n_nodes > 1

    # summary
    PREFIX = f"--- Global rank: {params.global_rank} - "
    logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes)
    logger.info(PREFIX + "Node ID        : %i" % params.node_id)
    logger.info(PREFIX + "Local rank     : %i" % params.local_rank)
    logger.info(PREFIX + "World size     : %i" % params.world_size)
    logger.info(PREFIX + "GPUs per node  : %i" % params.n_gpu_per_node)
    logger.info(PREFIX + "Master         : %s" % str(params.is_master))
    logger.info(PREFIX + "Multi-node     : %s" % str(params.multi_node))
    logger.info(PREFIX + "Multi-GPU      : %s" % str(params.multi_gpu))
    logger.info(PREFIX + "Hostname       : %s" % socket.gethostname())

    # set GPU device
    torch.cuda.set_device(params.local_rank)

    # initialize multi-GPU
    if params.multi_gpu:
        logger.info("Initializing PyTorch distributed")
        torch.distributed.init_process_group(
122
            init_method="env://", backend="nccl",
VictorSanh's avatar
VictorSanh committed
123
124
125
126
127
128
129
130
131
132
133
        )


def set_seed(args):
    """
    Set the random seed.
    """
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)