utils.py 4.17 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
VictorSanh's avatar
VictorSanh committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
15
16
""" Utils to train DistilBERT
    adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
VictorSanh's avatar
VictorSanh committed
17
"""
VictorSanh's avatar
VictorSanh committed
18
19
20
21
22
23
24
25
import git
import json
import os
import socket
import torch
import numpy as np

import logging
26
27
28
29
30
31

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d -  %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)
VictorSanh's avatar
VictorSanh committed
32
33
34
35
36
37
38
39
40
logger = logging.getLogger(__name__)


def git_log(folder_path: str):
    """
    Log commit info.
    """
    repo = git.Repo(search_parent_directories=True)
    repo_infos = {
41
42
43
        "repo_id": str(repo),
        "repo_sha": str(repo.head.object.hexsha),
        "repo_branch": str(repo.active_branch),
VictorSanh's avatar
VictorSanh committed
44
45
    }

46
    with open(os.path.join(folder_path, "git_log.json"), "w") as f:
VictorSanh's avatar
VictorSanh committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        json.dump(repo_infos, f, indent=4)


def init_gpu_params(params):
    """
    Handle single and multi-GPU / multi-node.
    """
    if params.n_gpu <= 0:
        params.local_rank = 0
        params.master_port = -1
        params.is_master = True
        params.multi_gpu = False
        return

    assert torch.cuda.is_available()

63
    logger.info("Initializing GPUs")
VictorSanh's avatar
VictorSanh committed
64
65
66
    if params.n_gpu > 1:
        assert params.local_rank != -1

67
68
69
        params.world_size = int(os.environ["WORLD_SIZE"])
        params.n_gpu_per_node = int(os.environ["N_GPU_NODE"])
        params.global_rank = int(os.environ["RANK"])
VictorSanh's avatar
VictorSanh committed
70
71
72
73
74
75

        # number of nodes / node ID
        params.n_nodes = params.world_size // params.n_gpu_per_node
        params.node_id = params.global_rank // params.n_gpu_per_node
        params.multi_gpu = True

76
77
        assert params.n_nodes == int(os.environ["N_NODES"])
        assert params.node_id == int(os.environ["NODE_RANK"])
VictorSanh's avatar
VictorSanh committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

    # local job (single GPU)
    else:
        assert params.local_rank == -1

        params.n_nodes = 1
        params.node_id = 0
        params.local_rank = 0
        params.global_rank = 0
        params.world_size = 1
        params.n_gpu_per_node = 1
        params.multi_gpu = False

    # sanity checks
    assert params.n_nodes >= 1
    assert 0 <= params.node_id < params.n_nodes
    assert 0 <= params.local_rank <= params.global_rank < params.world_size
    assert params.world_size == params.n_nodes * params.n_gpu_per_node

    # define whether this is the master process / if we are in multi-node distributed mode
    params.is_master = params.node_id == 0 and params.local_rank == 0
    params.multi_node = params.n_nodes > 1

    # summary
    PREFIX = f"--- Global rank: {params.global_rank} - "
    logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes)
    logger.info(PREFIX + "Node ID        : %i" % params.node_id)
    logger.info(PREFIX + "Local rank     : %i" % params.local_rank)
    logger.info(PREFIX + "World size     : %i" % params.world_size)
    logger.info(PREFIX + "GPUs per node  : %i" % params.n_gpu_per_node)
    logger.info(PREFIX + "Master         : %s" % str(params.is_master))
    logger.info(PREFIX + "Multi-node     : %s" % str(params.multi_node))
    logger.info(PREFIX + "Multi-GPU      : %s" % str(params.multi_gpu))
    logger.info(PREFIX + "Hostname       : %s" % socket.gethostname())

    # set GPU device
    torch.cuda.set_device(params.local_rank)

    # initialize multi-GPU
    if params.multi_gpu:
        logger.info("Initializing PyTorch distributed")
        torch.distributed.init_process_group(
120
            init_method="env://", backend="nccl",
VictorSanh's avatar
VictorSanh committed
121
122
123
124
125
126
127
128
129
130
131
        )


def set_seed(args):
    """
    Set the random seed.
    """
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)