"tests/vscode:/vscode.git/clone" did not exist on "fc5fdc109d317aecf46751590007cd8bd3b4177d"
configuration_utils.py 45.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Configuration base class and utilities."""


import copy
import json
import os
22
import re
23
import warnings
24
25
26
from typing import Any, Dict, Optional, Tuple, Union

from packaging import version
27

28
from . import __version__
29
30
31
32
33
from .file_utils import (
    CONFIG_NAME,
    PushToHubMixin,
    cached_path,
    copy_func,
34
    get_list_of_files,
35
36
37
    hf_bucket_url,
    is_offline_mode,
    is_remote_url,
38
    is_torch_available,
39
)
Lysandre Debut's avatar
Lysandre Debut committed
40
from .utils import logging
Aymeric Augustin's avatar
Aymeric Augustin committed
41

42

Lysandre Debut's avatar
Lysandre Debut committed
43
logger = logging.get_logger(__name__)
44
45
FULL_CONFIGURATION_FILE = "config.json"
_re_configuration_file = re.compile(r"config\.(.*)\.json")
46

47

Sylvain Gugger's avatar
Sylvain Gugger committed
48
class PretrainedConfig(PushToHubMixin):
Sylvain Gugger's avatar
Sylvain Gugger committed
49
50
51
    r"""
    Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as
    methods for loading/downloading/saving configurations.
Lysandre's avatar
Lysandre committed
52

53
54
55
    Note:
        A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to
        initialize a model does **not** load the model weights. It only affects the model's configuration.
Lysandre's avatar
Lysandre committed
56
57

    Class attributes (overridden by derived classes)
Sylvain Gugger's avatar
Sylvain Gugger committed
58

59
        - **model_type** (:obj:`str`) -- An identifier for the model type, serialized into the JSON file, and used to
Lysandre's avatar
Lysandre committed
60
          recreate the correct object in :class:`~transformers.AutoConfig`.
61
62
63
64
65
        - **is_composition** (:obj:`bool`) -- Whether the config class is composed of multiple sub-configs. In this
          case the config has to be initialized from two or more configs of type
          :class:`~transformers.PretrainedConfig` like: :class:`~transformers.EncoderDecoderConfig` or
          :class:`~RagConfig`.
        - **keys_to_ignore_at_inference** (:obj:`List[str]`) -- A list of keys to ignore by default when looking at
66
          dictionary outputs of the model during inference.
67
68
        - **attribute_map** (:obj:`Dict[str, str]`) -- A dict that maps model specific attribute names to the
          standardized naming of attributes.
Lysandre's avatar
Lysandre committed
69

70
71
72
73
74
75
76
77
78
    Common attributes (present in all subclasses)

        - **vocab_size** (:obj:`int`) -- The number of tokens in the vocabulary, which is also the first dimension of
          the embeddings matrix (this attribute may be missing for models that don't have a text modality like ViT).
        - **hidden_size** (:obj:`int`) -- The hidden size of the model.
        - **num_attention_heads** (:obj:`int`) -- The number of attention heads used in the multi-head attention layers
          of the model.
        - **num_hidden_layers** (:obj:`int`) -- The number of blocks in the model.

Lysandre's avatar
Lysandre committed
79
    Args:
80
        name_or_path (:obj:`str`, `optional`, defaults to :obj:`""`):
Sylvain Gugger's avatar
Sylvain Gugger committed
81
82
83
            Store the string that was passed to :func:`~transformers.PreTrainedModel.from_pretrained` or
            :func:`~transformers.TFPreTrainedModel.from_pretrained` as ``pretrained_model_name_or_path`` if the
            configuration was created with such a method.
Lysandre's avatar
Lysandre committed
84
85
86
87
        output_hidden_states (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not the model should return all hidden-states.
        output_attentions (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not the model should returns all attentions.
88
        return_dict (:obj:`bool`, `optional`, defaults to :obj:`True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
89
90
            Whether or not the model should return a :class:`~transformers.file_utils.ModelOutput` instead of a plain
            tuple.
Lysandre's avatar
Lysandre committed
91
92
93
94
        is_encoder_decoder (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether the model is used as an encoder/decoder or not.
        is_decoder (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether the model is used as decoder or not (in which case it's used as an encoder).
95
96
97
        cross_attention_hidden_size (:obj:`bool`, `optional`):
            The hidden size of the cross-attention layer in case the model is used as a decoder in an encoder-decoder
            setting and the cross-attention hidden dimension differs from `self.config.hidden_size`.
Lysandre's avatar
Lysandre committed
98
        add_cross_attention (:obj:`bool`, `optional`, defaults to :obj:`False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
99
100
101
            Whether cross-attention layers should be added to the model. Note, this option is only relevant for models
            that can be used as decoder models within the `:class:~transformers.EncoderDecoderModel` class, which
            consists of all models in ``AUTO_MODELS_FOR_CAUSAL_LM``.
102
        tie_encoder_decoder (:obj:`bool`, `optional`, defaults to :obj:`False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
103
104
            Whether all encoder weights should be tied to their equivalent decoder weights. This requires the encoder
            and decoder model to have the exact same parameter names.
Lysandre's avatar
Lysandre committed
105
        prune_heads (:obj:`Dict[int, List[int]]`, `optional`, defaults to :obj:`{}`):
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
            Pruned heads of the model. The keys are the selected layer indices and the associated values, the list of
            heads to prune in said layer.
Lysandre's avatar
Lysandre committed
108

Sylvain Gugger's avatar
Sylvain Gugger committed
109
            For instance ``{1: [0, 2], 2: [2, 3]}`` will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2.
Lysandre's avatar
Lysandre committed
110
        chunk_size_feed_forward (:obj:`int`, `optional`, defaults to :obj:`0`):
Sylvain Gugger's avatar
Sylvain Gugger committed
111
112
113
114
            The chunk size of all feed forward layers in the residual attention blocks. A chunk size of :obj:`0` means
            that the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processes
            :obj:`n` < sequence_length embeddings at a time. For more information on feed forward chunking, see `How
            does Feed Forward Chunking work? <../glossary.html#feed-forward-chunking>`__ .
Lysandre's avatar
Lysandre committed
115
116

    Parameters for sequence generation
Sylvain Gugger's avatar
Sylvain Gugger committed
117
118
119
120
121
122
123
124
125
126
127
128

        - **max_length** (:obj:`int`, `optional`, defaults to 20) -- Maximum length that will be used by default in the
          :obj:`generate` method of the model.
        - **min_length** (:obj:`int`, `optional`, defaults to 10) -- Minimum length that will be used by default in the
          :obj:`generate` method of the model.
        - **do_sample** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Flag that will be used by default in the
          :obj:`generate` method of the model. Whether or not to use sampling ; use greedy decoding otherwise.
        - **early_stopping** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Flag that will be used by default
          in the :obj:`generate` method of the model. Whether to stop the beam search when at least ``num_beams``
          sentences are finished per batch or not.
        - **num_beams** (:obj:`int`, `optional`, defaults to 1) -- Number of beams for beam search that will be used by
          default in the :obj:`generate` method of the model. 1 means no beam search.
129
130
131
132
133
134
        - **num_beam_groups** (:obj:`int`, `optional`, defaults to 1) -- Number of groups to divide :obj:`num_beams`
          into in order to ensure diversity among different groups of beams that will be used by default in the
          :obj:`generate` method of the model. 1 means no group beam search.
        - **diversity_penalty** (:obj:`float`, `optional`, defaults to 0.0) -- Value to control diversity for group
          beam search. that will be used by default in the :obj:`generate` method of the model. 0 means no diversity
          penalty. The higher the penalty, the more diverse are the outputs.
Lysandre's avatar
Lysandre committed
135
136
137
        - **temperature** (:obj:`float`, `optional`, defaults to 1) -- The value used to module the next token
          probabilities that will be used by default in the :obj:`generate` method of the model. Must be strictly
          positive.
Sylvain Gugger's avatar
Sylvain Gugger committed
138
139
140
141
142
143
144
145
146
147
148
149
        - **top_k** (:obj:`int`, `optional`, defaults to 50) -- Number of highest probability vocabulary tokens to keep
          for top-k-filtering that will be used by default in the :obj:`generate` method of the model.
        - **top_p** (:obj:`float`, `optional`, defaults to 1) -- Value that will be used by default in the
          :obj:`generate` method of the model for ``top_p``. If set to float < 1, only the most probable tokens with
          probabilities that add up to ``top_p`` or higher are kept for generation.
        - **repetition_penalty** (:obj:`float`, `optional`, defaults to 1) -- Parameter for repetition penalty that
          will be used by default in the :obj:`generate` method of the model. 1.0 means no penalty.
        - **length_penalty** (:obj:`float`, `optional`, defaults to 1) -- Exponential penalty to the length that will
          be used by default in the :obj:`generate` method of the model.
        - **no_repeat_ngram_size** (:obj:`int`, `optional`, defaults to 0) -- Value that will be used by default in the
          :obj:`generate` method of the model for ``no_repeat_ngram_size``. If set to int > 0, all ngrams of that size
          can only occur once.
150
151
152
        - **encoder_no_repeat_ngram_size** (:obj:`int`, `optional`, defaults to 0) -- Value that will be used by
          default in the :obj:`generate` method of the model for ``encoder_no_repeat_ngram_size``. If set to int > 0,
          all ngrams of that size that occur in the ``encoder_input_ids`` cannot occur in the ``decoder_input_ids``.
Sylvain Gugger's avatar
Sylvain Gugger committed
153
154
155
156
157
158
159
        - **bad_words_ids** (:obj:`List[int]`, `optional`) -- List of token ids that are not allowed to be generated
          that will be used by default in the :obj:`generate` method of the model. In order to get the tokens of the
          words that should not appear in the generated text, use :obj:`tokenizer.encode(bad_word,
          add_prefix_space=True)`.
        - **num_return_sequences** (:obj:`int`, `optional`, defaults to 1) -- Number of independently computed returned
          sequences for each element in the batch that will be used by default in the :obj:`generate` method of the
          model.
160
161
162
163
        - **output_scores** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Whether the model should return the
          logits when used for generation
        - **return_dict_in_generate** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Whether the model should
          return a :class:`~transformers.file_utils.ModelOutput` instead of a :obj:`torch.LongTensor`
164
165
166
167
168
        - **forced_bos_token_id** (:obj:`int`, `optional`) -- The id of the token to force as the first generated token
          after the :obj:`decoder_start_token_id`. Useful for multilingual models like :doc:`mBART
          <../model_doc/mbart>` where the first generated token needs to be the target language token.
        - **forced_eos_token_id** (:obj:`int`, `optional`) -- The id of the token to force as the last generated token
          when :obj:`max_length` is reached.
169
170
171
        - **remove_invalid_values** (:obj:`bool`, `optional`) -- Whether to remove possible `nan` and `inf` outputs of
          the model to prevent the generation method to crash. Note that using ``remove_invalid_values`` can slow down
          generation.
172

Lysandre's avatar
Lysandre committed
173
174

    Parameters for fine-tuning tasks
Sylvain Gugger's avatar
Sylvain Gugger committed
175
176
177

        - **architectures** (:obj:`List[str]`, `optional`) -- Model architectures that can be used with the model
          pretrained weights.
Lysandre's avatar
Lysandre committed
178
179
        - **finetuning_task** (:obj:`str`, `optional`) -- Name of the task used to fine-tune the model. This can be
          used when converting from an original (TensorFlow or PyTorch) checkpoint.
Sylvain Gugger's avatar
Sylvain Gugger committed
180
181
        - **id2label** (:obj:`Dict[int, str]`, `optional`) -- A map from index (for instance prediction index, or
          target index) to label.
Lysandre's avatar
Lysandre committed
182
183
184
        - **label2id** (:obj:`Dict[str, int]`, `optional`) -- A map from label to index for the model.
        - **num_labels** (:obj:`int`, `optional`) -- Number of labels to use in the last layer added to the model,
          typically for a classification task.
Sylvain Gugger's avatar
Sylvain Gugger committed
185
186
        - **task_specific_params** (:obj:`Dict[str, Any]`, `optional`) -- Additional keyword arguments to store for the
          current task.
187
188
189
190
191
192
193
194
        - **problem_type** (:obj:`str`, `optional`) -- Problem type for :obj:`XxxForSequenceClassification` models. Can
          be one of (:obj:`"regression"`, :obj:`"single_label_classification"`, :obj:`"multi_label_classification"`).
          Please note that this parameter is only available in the following models: `AlbertForSequenceClassification`,
          `BertForSequenceClassification`, `BigBirdForSequenceClassification`, `ConvBertForSequenceClassification`,
          `DistilBertForSequenceClassification`, `ElectraForSequenceClassification`, `FunnelForSequenceClassification`,
          `LongformerForSequenceClassification`, `MobileBertForSequenceClassification`,
          `ReformerForSequenceClassification`, `RobertaForSequenceClassification`,
          `SqueezeBertForSequenceClassification`, `XLMForSequenceClassification` and `XLNetForSequenceClassification`.
Lysandre's avatar
Lysandre committed
195
196

    Parameters linked to the tokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
197

198
199
        - **tokenizer_class** (:obj:`str`, `optional`) -- The name of the associated tokenizer class to use (if none is
          set, will use the tokenizer associated to the model by default).
Sylvain Gugger's avatar
Sylvain Gugger committed
200
201
        - **prefix** (:obj:`str`, `optional`) -- A specific prompt that should be added at the beginning of each text
          before calling the model.
Lysandre's avatar
Lysandre committed
202
203
204
        - **bos_token_id** (:obj:`int`, `optional`)) -- The id of the `beginning-of-stream` token.
        - **pad_token_id** (:obj:`int`, `optional`)) -- The id of the `padding` token.
        - **eos_token_id** (:obj:`int`, `optional`)) -- The id of the `end-of-stream` token.
Sylvain Gugger's avatar
Sylvain Gugger committed
205
206
        - **decoder_start_token_id** (:obj:`int`, `optional`)) -- If an encoder-decoder model starts decoding with a
          different token than `bos`, the id of that token.
207
        - **sep_token_id** (:obj:`int`, `optional`)) -- The id of the `separation` token.
Lysandre's avatar
Lysandre committed
208
209

    PyTorch specific parameters
Sylvain Gugger's avatar
Sylvain Gugger committed
210

Lysandre's avatar
Lysandre committed
211
212
        - **torchscript** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Whether or not the model should be
          used with Torchscript.
Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
215
        - **tie_word_embeddings** (:obj:`bool`, `optional`, defaults to :obj:`True`) -- Whether the model's input and
          output word embeddings should be tied. Note that this is only relevant if the model has a output word
          embedding layer.
216
217
218
219
220
221
        - **torch_dtype** (:obj:`str`, `optional`) -- The :obj:`dtype` of the weights. This attribute can be used to
          initialize the model to a non-default ``dtype`` (which is normally ``float32``) and thus allow for optimal
          storage allocation. For example, if the saved model is ``float16``, ideally we want to load it back using the
          minimal amount of memory needed to load ``float16`` weights. Since the config object is stored in plain text,
          this attribute contains just the floating type string without the ``torch.`` prefix. For example, for
          ``torch.float16`` ``torch_dtype`` is the ``"float16"`` string.
Lysandre's avatar
Lysandre committed
222

223
224
225
          This attribute is currently not being used during model loading time, but this may change in the future
          versions. But we can already start preparing for the future by saving the dtype with save_pretrained.

Lysandre's avatar
Lysandre committed
226
    TensorFlow specific parameters
Sylvain Gugger's avatar
Sylvain Gugger committed
227
228
229

        - **use_bfloat16** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Whether or not the model should use
          BFloat16 scalars (only used by some TensorFlow models).
230
    """
231
    model_type: str = ""
232
    is_composition: bool = False
233
234
235
236
237
238
239
240
241
242
243
    attribute_map: Dict[str, str] = {}

    def __setattr__(self, key, value):
        if key in super().__getattribute__("attribute_map"):
            key = super().__getattribute__("attribute_map")[key]
        super().__setattr__(key, value)

    def __getattribute__(self, key):
        if key != "attribute_map" and key in super().__getattribute__("attribute_map"):
            key = super().__getattribute__("attribute_map")[key]
        return super().__getattribute__(key)
244
245

    def __init__(self, **kwargs):
thomwolf's avatar
thomwolf committed
246
        # Attributes with defaults
247
        self.return_dict = kwargs.pop("return_dict", True)
248
        self.output_hidden_states = kwargs.pop("output_hidden_states", False)
249
        self.output_attentions = kwargs.pop("output_attentions", False)
250
        self.torchscript = kwargs.pop("torchscript", False)  # Only used by PyTorch models
251
        self.torch_dtype = kwargs.pop("torch_dtype", None)  # Only used by PyTorch models
252
253
        self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
        self.pruned_heads = kwargs.pop("pruned_heads", {})
254
255
256
        self.tie_word_embeddings = kwargs.pop(
            "tie_word_embeddings", True
        )  # Whether input and output word embeddings should be tied for all MLM, LM and Seq2Seq models.
thomwolf's avatar
thomwolf committed
257
258

        # Is decoder is used in encoder-decoder models to differentiate encoder from decoder
Patrick von Platen's avatar
Patrick von Platen committed
259
        self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False)
260
        self.is_decoder = kwargs.pop("is_decoder", False)
261
        self.cross_attention_hidden_size = kwargs.pop("cross_attention_hidden_size", None)
262
        self.add_cross_attention = kwargs.pop("add_cross_attention", False)
263
        self.tie_encoder_decoder = kwargs.pop("tie_encoder_decoder", False)
264

thomwolf's avatar
thomwolf committed
265
        # Parameters for sequence generation
266
        self.max_length = kwargs.pop("max_length", 20)
Patrick von Platen's avatar
Patrick von Platen committed
267
        self.min_length = kwargs.pop("min_length", 0)
268
        self.do_sample = kwargs.pop("do_sample", False)
Patrick von Platen's avatar
Patrick von Platen committed
269
        self.early_stopping = kwargs.pop("early_stopping", False)
270
        self.num_beams = kwargs.pop("num_beams", 1)
271
272
        self.num_beam_groups = kwargs.pop("num_beam_groups", 1)
        self.diversity_penalty = kwargs.pop("diversity_penalty", 0.0)
273
274
275
276
277
        self.temperature = kwargs.pop("temperature", 1.0)
        self.top_k = kwargs.pop("top_k", 50)
        self.top_p = kwargs.pop("top_p", 1.0)
        self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0)
        self.length_penalty = kwargs.pop("length_penalty", 1.0)
Patrick von Platen's avatar
Patrick von Platen committed
278
        self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0)
279
        self.encoder_no_repeat_ngram_size = kwargs.pop("encoder_no_repeat_ngram_size", 0)
280
        self.bad_words_ids = kwargs.pop("bad_words_ids", None)
281
        self.num_return_sequences = kwargs.pop("num_return_sequences", 1)
Pradhy729's avatar
Pradhy729 committed
282
        self.chunk_size_feed_forward = kwargs.pop("chunk_size_feed_forward", 0)
283
284
        self.output_scores = kwargs.pop("output_scores", False)
        self.return_dict_in_generate = kwargs.pop("return_dict_in_generate", False)
285
286
        self.forced_bos_token_id = kwargs.pop("forced_bos_token_id", None)
        self.forced_eos_token_id = kwargs.pop("forced_eos_token_id", None)
287
        self.remove_invalid_values = kwargs.pop("remove_invalid_values", False)
thomwolf's avatar
thomwolf committed
288

thomwolf's avatar
thomwolf committed
289
        # Fine-tuning task arguments
Julien Chaumond's avatar
Julien Chaumond committed
290
        self.architectures = kwargs.pop("architectures", None)
291
        self.finetuning_task = kwargs.pop("finetuning_task", None)
292
293
294
        self.id2label = kwargs.pop("id2label", None)
        self.label2id = kwargs.pop("label2id", None)
        if self.id2label is not None:
295
            kwargs.pop("num_labels", None)
296
297
298
299
            self.id2label = dict((int(key), value) for key, value in self.id2label.items())
            # Keys are always strings in JSON so convert ids to int here.
        else:
            self.num_labels = kwargs.pop("num_labels", 2)
thomwolf's avatar
thomwolf committed
300

301
302
303
304
305
306
307
308
        if self.torch_dtype is not None and isinstance(self.torch_dtype, str):
            # we will start using self.torch_dtype in v5, but to be consistent with
            # from_pretrained's torch_dtype arg convert it to an actual torch.dtype object
            if is_torch_available():
                import torch

                self.torch_dtype = getattr(torch, self.torch_dtype)

309
        # Tokenizer arguments TODO: eventually tokenizer and models should share the same config
310
        self.tokenizer_class = kwargs.pop("tokenizer_class", None)
311
312
313
314
        self.prefix = kwargs.pop("prefix", None)
        self.bos_token_id = kwargs.pop("bos_token_id", None)
        self.pad_token_id = kwargs.pop("pad_token_id", None)
        self.eos_token_id = kwargs.pop("eos_token_id", None)
315
316
        self.sep_token_id = kwargs.pop("sep_token_id", None)

317
318
319
320
321
        self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)

        # task specific arguments
        self.task_specific_params = kwargs.pop("task_specific_params", None)

322
323
324
325
326
        # regression / multi-label classification
        self.problem_type = kwargs.pop("problem_type", None)
        allowed_problem_types = ("regression", "single_label_classification", "multi_label_classification")
        if self.problem_type is not None and self.problem_type not in allowed_problem_types:
            raise ValueError(
327
                f"The config parameter `problem_type` was not understood: received {self.problem_type} "
328
329
330
                "but only 'regression', 'single_label_classification' and 'multi_label_classification' are valid."
            )

331
        # TPU arguments
332
        if kwargs.pop("xla_device", None) is not None:
333
            logger.warning(
334
335
336
                "The `xla_device` argument has been deprecated in v4.4.0 of Transformers. It is ignored and you can "
                "safely remove it from your `config.json` file."
            )
337

338
339
340
        # Name or path to the pretrained checkpoint
        self._name_or_path = str(kwargs.pop("name_or_path", ""))

341
        # Drop the transformers version info
342
        self.transformers_version = kwargs.pop("transformers_version", None)
343

344
        # Deal with gradient checkpointing
345
        if kwargs.get("gradient_checkpointing", False):
346
347
348
349
350
351
            warnings.warn(
                "Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 "
                "Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the "
                "`Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`."
            )

thomwolf's avatar
thomwolf committed
352
353
354
355
356
        # Additional attributes without default values
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
357
                logger.error(f"Can't set {key} with value {value} for {self}")
thomwolf's avatar
thomwolf committed
358
359
                raise err

360
361
362
363
364
365
366
367
    @property
    def name_or_path(self) -> str:
        return self._name_or_path

    @name_or_path.setter
    def name_or_path(self, value):
        self._name_or_path = str(value)  # Make sure that name_or_path is a string (for JSON encoding)

368
    @property
369
    def use_return_dict(self) -> bool:
370
        """
371
        :obj:`bool`: Whether or not return :class:`~transformers.file_utils.ModelOutput` instead of tuples.
372
        """
373
374
        # If torchscript is set, force `return_dict=False` to avoid jit errors
        return self.return_dict and not self.torchscript
375

376
    @property
377
    def num_labels(self) -> int:
378
379
380
        """
        :obj:`int`: The number of labels for classification models.
        """
381
        return len(self.id2label)
382
383

    @num_labels.setter
384
    def num_labels(self, num_labels: int):
385
        if not hasattr(self, "id2label") or self.id2label is None or len(self.id2label) != num_labels:
386
            self.id2label = {i: f"LABEL_{i}" for i in range(num_labels)}
387
            self.label2id = dict(zip(self.id2label.values(), self.id2label.keys()))
388

Sylvain Gugger's avatar
Sylvain Gugger committed
389
    def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
Lysandre's avatar
Lysandre committed
390
        """
391
392
        Save a configuration object to the directory ``save_directory``, so that it can be re-loaded using the
        :func:`~transformers.PretrainedConfig.from_pretrained` class method.
Lysandre's avatar
Lysandre committed
393
394

        Args:
395
            save_directory (:obj:`str` or :obj:`os.PathLike`):
396
                Directory where the configuration JSON file will be saved (will be created if it does not exist).
Sylvain Gugger's avatar
Sylvain Gugger committed
397
398
            push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to push your model to the Hugging Face model hub after saving it.
399
400
401
402
403
404
405
406

                .. warning::

                    Using :obj:`push_to_hub=True` will synchronize the repository you are pushing to with
                    :obj:`save_directory`, which requires :obj:`save_directory` to be a local clone of the repo you are
                    pushing to if it's an existing folder. Pass along :obj:`temp_dir=True` to use a temporary directory
                    instead.

Sylvain Gugger's avatar
Sylvain Gugger committed
407
408
409
            kwargs:
                Additional key word arguments passed along to the
                :meth:`~transformers.file_utils.PushToHubMixin.push_to_hub` method.
410
        """
411
        if os.path.isfile(save_directory):
412
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
413
414
415
416
417

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            repo = self._create_or_get_repo(save_directory, **kwargs)

418
        os.makedirs(save_directory, exist_ok=True)
419
420
421
        # If we save using the predefined names, we can load using `from_pretrained`
        output_config_file = os.path.join(save_directory, CONFIG_NAME)

422
        self.to_json_file(output_config_file, use_diff=True)
423
        logger.info(f"Configuration saved in {output_config_file}")
424

Sylvain Gugger's avatar
Sylvain Gugger committed
425
        if push_to_hub:
426
            url = self._push_to_hub(repo, commit_message=commit_message)
Sylvain Gugger's avatar
Sylvain Gugger committed
427
428
            logger.info(f"Configuration pushed to the hub in this commit: {url}")

429
    @classmethod
430
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
Lysandre's avatar
Lysandre committed
431
        r"""
432
433
        Instantiate a :class:`~transformers.PretrainedConfig` (or a derived class) from a pretrained model
        configuration.
Lysandre's avatar
Lysandre committed
434
435

        Args:
436
            pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
437
438
                This can be either:

439
440
441
                - a string, the `model id` of a pretrained model configuration hosted inside a model repo on
                  huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or
                  namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``.
442
443
444
445
                - a path to a `directory` containing a configuration file saved using the
                  :func:`~transformers.PretrainedConfig.save_pretrained` method, e.g., ``./my_model_directory/``.
                - a path or url to a saved configuration JSON `file`, e.g.,
                  ``./my_model_directory/configuration.json``.
446
            cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`):
447
448
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
Lysandre's avatar
Lysandre committed
449
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
450
451
                Whether or not to force to (re-)download the configuration files and override the cached versions if
                they exist.
Lysandre's avatar
Lysandre committed
452
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
453
454
455
                Whether or not to delete incompletely received file. Attempts to resume the download if such a file
                exists.
            proxies (:obj:`Dict[str, str]`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
456
457
                A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
458
459
460
            use_auth_token (:obj:`str` or `bool`, `optional`):
                The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
                generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`).
Julien Chaumond's avatar
Julien Chaumond committed
461
462
463
464
            revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
                identifier allowed by git.
465
466
467
468
469
470
471
472
            return_unused_kwargs (:obj:`bool`, `optional`, defaults to :obj:`False`):
                If :obj:`False`, then this function returns just the final configuration object.

                If :obj:`True`, then this functions returns a :obj:`Tuple(config, unused_kwargs)` where `unused_kwargs`
                is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e.,
                the part of ``kwargs`` which has not been used to update ``config`` and is otherwise ignored.
            kwargs (:obj:`Dict[str, Any]`, `optional`):
                The values in kwargs of any keys which are configuration attributes will be used to override the loaded
Sylvain Gugger's avatar
Sylvain Gugger committed
473
474
                values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
                by the ``return_unused_kwargs`` keyword parameter.
475

476
477
478
479
        .. note::

            Passing :obj:`use_auth_token=True` is required when you want to use a private model.

480

Lysandre's avatar
Lysandre committed
481
        Returns:
482
            :class:`PretrainedConfig`: The configuration object instantiated from this pretrained model.
483
484
485
486
487

        Examples::

            # We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a
            # derived class: BertConfig
488
            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from huggingface.co and cache.
489
490
            config = BertConfig.from_pretrained('./test/saved_model/')  # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
            config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
491
492
493
            config = BertConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False)
            assert config.output_attentions == True
            config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attentions=True,
494
                                                               foo=False, return_unused_kwargs=True)
495
            assert config.output_attentions == True
496
497
498
            assert unused_kwargs == {'foo': False}

        """
Julien Chaumond's avatar
Julien Chaumond committed
499
        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
500
501
502
503
504
        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warn(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )
505

506
507
508
        return cls.from_dict(config_dict, **kwargs)

    @classmethod
509
510
511
    def get_config_dict(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
512
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
513
514
        From a ``pretrained_model_name_or_path``, resolve to a dictionary of parameters, to be used for instantiating a
        :class:`~transformers.PretrainedConfig` using ``from_dict``.
515

516
517


518
        Parameters:
519
            pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
Lysandre's avatar
Lysandre committed
520
521
522
                The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.

        Returns:
523
            :obj:`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the configuration object.
Lysandre's avatar
Lysandre committed
524

525
        """
526
527
528
529
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
530
        use_auth_token = kwargs.pop("use_auth_token", None)
531
        local_files_only = kwargs.pop("local_files_only", False)
Julien Chaumond's avatar
Julien Chaumond committed
532
        revision = kwargs.pop("revision", None)
533
534
535
536
537
538
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)

        user_agent = {"file_type": "config", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
539

540
541
542
543
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

544
        pretrained_model_name_or_path = str(pretrained_model_name_or_path)
545
        if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
546
            config_file = pretrained_model_name_or_path
547
        else:
548
549
550
551
552
            configuration_file = get_configuration_file(
                pretrained_model_name_or_path,
                revision=revision,
                use_auth_token=use_auth_token,
                local_files_only=local_files_only,
553
            )
554

555
556
557
558
559
560
561
            if os.path.isdir(pretrained_model_name_or_path):
                config_file = os.path.join(pretrained_model_name_or_path, configuration_file)
            else:
                config_file = hf_bucket_url(
                    pretrained_model_name_or_path, filename=configuration_file, revision=revision, mirror=None
                )

562
        try:
563
            # Load from URL or cache if already cached
564
565
566
567
568
569
            resolved_config_file = cached_path(
                config_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
570
                local_files_only=local_files_only,
571
                use_auth_token=use_auth_token,
572
                user_agent=user_agent,
573
            )
574
575
            # Load config dict
            config_dict = cls._dict_from_json_file(resolved_config_file)
576

Julien Chaumond's avatar
Julien Chaumond committed
577
578
        except EnvironmentError as err:
            logger.error(err)
579
580
            msg = (
                f"Can't load config for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
581
582
                f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n"
                f"  (make sure '{pretrained_model_name_or_path}' is not a path to a local directory with something else, in that case)\n\n"
583
584
                f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {CONFIG_NAME} file\n\n"
            )
585
586
587
588

            if revision is not None:
                msg += f"- or '{revision}' is a valid git identifier (branch name, a tag name, or a commit id) that exists for this model name as listed on its model page on 'https://huggingface.co/models'\n\n"

thomwolf's avatar
thomwolf committed
589
590
            raise EnvironmentError(msg)

591
        except (json.JSONDecodeError, UnicodeDecodeError):
592
            msg = (
593
                f"Couldn't reach server at '{config_file}' to download configuration file or "
594
                "configuration file is not a valid JSON file. "
595
                f"Please check network or file content here: {resolved_config_file}."
596
            )
597
598
            raise EnvironmentError(msg)

599
        if resolved_config_file == config_file:
600
            logger.info(f"loading configuration file {config_file}")
601
        else:
602
            logger.info(f"loading configuration file {config_file} from cache at {resolved_config_file}")
603

604
605
606
        return config_dict, kwargs

    @classmethod
607
    def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PretrainedConfig":
Lysandre's avatar
Lysandre committed
608
        """
609
        Instantiates a :class:`~transformers.PretrainedConfig` from a Python dictionary of parameters.
Lysandre's avatar
Lysandre committed
610
611

        Args:
612
613
614
615
616
            config_dict (:obj:`Dict[str, Any]`):
                Dictionary that will be used to instantiate the configuration object. Such a dictionary can be
                retrieved from a pretrained checkpoint by leveraging the
                :func:`~transformers.PretrainedConfig.get_config_dict` method.
            kwargs (:obj:`Dict[str, Any]`):
Lysandre's avatar
Lysandre committed
617
618
619
                Additional parameters from which to initialize the configuration object.

        Returns:
620
            :class:`PretrainedConfig`: The configuration object instantiated from those parameters.
Lysandre's avatar
Lysandre committed
621
        """
622
623
624
625
        return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)

        config = cls(**config_dict)

626
        if hasattr(config, "pruned_heads"):
627
            config.pruned_heads = dict((int(key), value) for key, value in config.pruned_heads.items())
628
629
630
631
632
633

        # Update config with kwargs if needed
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(config, key):
                setattr(config, key, value)
634
635
                if key != "torch_dtype":
                    to_remove.append(key)
636
637
638
        for key in to_remove:
            kwargs.pop(key, None)

639
        logger.info(f"Model config {config}")
640
641
642
643
644
645
        if return_unused_kwargs:
            return config, kwargs
        else:
            return config

    @classmethod
646
    def from_json_file(cls, json_file: Union[str, os.PathLike]) -> "PretrainedConfig":
Lysandre's avatar
Lysandre committed
647
        """
648
        Instantiates a :class:`~transformers.PretrainedConfig` from the path to a JSON file of parameters.
Lysandre's avatar
Lysandre committed
649
650

        Args:
651
            json_file (:obj:`str` or :obj:`os.PathLike`):
Lysandre's avatar
Lysandre committed
652
653
654
                Path to the JSON file containing the parameters.

        Returns:
655
            :class:`PretrainedConfig`: The configuration object instantiated from that JSON file.
Lysandre's avatar
Lysandre committed
656
657

        """
658
659
        config_dict = cls._dict_from_json_file(json_file)
        return cls(**config_dict)
660
661

    @classmethod
662
    def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
663
        with open(json_file, "r", encoding="utf-8") as reader:
664
            text = reader.read()
665
        return json.loads(text)
666
667
668
669
670

    def __eq__(self, other):
        return self.__dict__ == other.__dict__

    def __repr__(self):
671
        return f"{self.__class__.__name__} {self.to_json_string()}"
672

673
    def to_diff_dict(self) -> Dict[str, Any]:
674
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
675
676
        Removes all attributes from config which correspond to the default config attributes for better readability and
        serializes to a Python dictionary.
677
678

        Returns:
679
            :obj:`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
680
681
682
683
684
685
        """
        config_dict = self.to_dict()

        # get the default config dict
        default_config_dict = PretrainedConfig().to_dict()

686
687
688
        # get class specific config dict
        class_config_dict = self.__class__().to_dict() if not self.is_composition else {}

689
690
691
692
        serializable_config_dict = {}

        # only serialize values that differ from the default config
        for key, value in config_dict.items():
693
694
            if (
                key not in default_config_dict
695
                or key == "transformers_version"
696
697
698
                or value != default_config_dict[key]
                or (key in class_config_dict and value != class_config_dict[key])
            ):
699
700
                serializable_config_dict[key] = value

701
702
        self.dict_torch_dtype_to_str(serializable_config_dict)

703
704
        return serializable_config_dict

705
    def to_dict(self) -> Dict[str, Any]:
Lysandre's avatar
Lysandre committed
706
707
708
709
        """
        Serializes this instance to a Python dictionary.

        Returns:
710
            :obj:`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
Lysandre's avatar
Lysandre committed
711
        """
712
        output = copy.deepcopy(self.__dict__)
713
714
        if hasattr(self.__class__, "model_type"):
            output["model_type"] = self.__class__.model_type
715
716
717
718

        # Transformers version when serializing the model
        output["transformers_version"] = __version__

719
720
        self.dict_torch_dtype_to_str(output)

721
722
        return output

723
    def to_json_string(self, use_diff: bool = True) -> str:
Lysandre's avatar
Lysandre committed
724
725
726
        """
        Serializes this instance to a JSON string.

727
        Args:
728
729
730
            use_diff (:obj:`bool`, `optional`, defaults to :obj:`True`):
                If set to ``True``, only the difference between the config instance and the default
                ``PretrainedConfig()`` is serialized to JSON string.
731

Lysandre's avatar
Lysandre committed
732
        Returns:
733
            :obj:`str`: String containing all the attributes that make up this configuration instance in JSON format.
Lysandre's avatar
Lysandre committed
734
        """
735
736
737
738
739
        if use_diff is True:
            config_dict = self.to_diff_dict()
        else:
            config_dict = self.to_dict()
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
740

741
    def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True):
Lysandre's avatar
Lysandre committed
742
        """
743
        Save this instance to a JSON file.
Lysandre's avatar
Lysandre committed
744
745

        Args:
746
            json_file_path (:obj:`str` or :obj:`os.PathLike`):
Lysandre's avatar
Lysandre committed
747
                Path to the JSON file in which this configuration instance's parameters will be saved.
748
749
750
            use_diff (:obj:`bool`, `optional`, defaults to :obj:`True`):
                If set to ``True``, only the difference between the config instance and the default
                ``PretrainedConfig()`` is serialized to JSON file.
Lysandre's avatar
Lysandre committed
751
        """
752
        with open(json_file_path, "w", encoding="utf-8") as writer:
753
            writer.write(self.to_json_string(use_diff=use_diff))
754

755
    def update(self, config_dict: Dict[str, Any]):
756
        """
757
        Updates attributes of this class with attributes from ``config_dict``.
758
759

        Args:
760
            config_dict (:obj:`Dict[str, Any]`): Dictionary of attributes that should be updated for this class.
761
762
763
        """
        for key, value in config_dict.items():
            setattr(self, key, value)
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801

    def update_from_string(self, update_str: str):
        """
        Updates attributes of this class with attributes from ``update_str``.

        The expected format is ints, floats and strings as is, and for booleans use ``true`` or ``false``. For example:
        "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"

        The keys to change have to already exist in the config object.

        Args:
            update_str (:obj:`str`): String with attributes that should be updated for this class.

        """

        d = dict(x.split("=") for x in update_str.split(","))
        for k, v in d.items():
            if not hasattr(self, k):
                raise ValueError(f"key {k} isn't in the original config dict")

            old_v = getattr(self, k)
            if isinstance(old_v, bool):
                if v.lower() in ["true", "1", "y", "yes"]:
                    v = True
                elif v.lower() in ["false", "0", "n", "no"]:
                    v = False
                else:
                    raise ValueError(f"can't derive true or false from {v} (key {k})")
            elif isinstance(old_v, int):
                v = int(v)
            elif isinstance(old_v, float):
                v = float(v)
            elif not isinstance(old_v, str):
                raise ValueError(
                    f"You can only update int, float, bool or string values in the config, got {v} for key {k}"
                )

            setattr(self, k, v)
802

803
804
805
806
807
808
809
810
811
    def dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None:
        """
        Checks whether the passed dictionary has a `torch_dtype` key and if it's not None, converts torch.dtype to a
        string of just the type. For example, :obj:`torch.float32` get converted into `"float32"` string, which can
        then be stored in the json format.
        """
        if d.get("torch_dtype", None) is not None and not isinstance(d["torch_dtype"], str):
            d["torch_dtype"] = str(d["torch_dtype"]).split(".")[1]

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
def get_configuration_file(
    path_or_repo: Union[str, os.PathLike],
    revision: Optional[str] = None,
    use_auth_token: Optional[Union[bool, str]] = None,
    local_files_only: bool = False,
) -> str:
    """
    Get the configuration file to use for this version of transformers.

    Args:
        path_or_repo (:obj:`str` or :obj:`os.PathLike`):
            Can be either the id of a repo on huggingface.co or a path to a `directory`.
        revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
            git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
            identifier allowed by git.
        use_auth_token (:obj:`str` or `bool`, `optional`):
            The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
            generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`).
        local_files_only (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not to only rely on local files and not to attempt to download any files.

    Returns:
        :obj:`str`: The configuration file to use.
    """
    # Inspect all files from the repo/folder.
    all_files = get_list_of_files(
        path_or_repo, revision=revision, use_auth_token=use_auth_token, local_files_only=local_files_only
    )
    configuration_files_map = {}
    for file_name in all_files:
        search = _re_configuration_file.search(file_name)
        if search is not None:
            v = search.groups()[0]
            configuration_files_map[v] = file_name
    available_versions = sorted(configuration_files_map.keys())

    # Defaults to FULL_CONFIGURATION_FILE and then try to look at some newer versions.
    configuration_file = FULL_CONFIGURATION_FILE
    transformers_version = version.parse(__version__)
    for v in available_versions:
        if version.parse(v) <= transformers_version:
            configuration_file = configuration_files_map[v]
        else:
            # No point going further since the versions are sorted.
            break

    return configuration_file


863
864
865
866
PretrainedConfig.push_to_hub = copy_func(PretrainedConfig.push_to_hub)
PretrainedConfig.push_to_hub.__doc__ = PretrainedConfig.push_to_hub.__doc__.format(
    object="config", object_class="AutoConfig", object_files="configuration file"
)