"vscode:/vscode.git/clone" did not exist on "29ea6832cd913b055ec1d6962180c773e8a7ac88"
run_seq2seq_qa.py 32.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
17
Fine-tuning the library's seq2seq models for question answering using the 馃 Seq2SeqTrainer.
18
19
20
21
22
23
"""
# You can also adapt this script on your own question answering task. Pointers for this are left as comments.

import logging
import os
import sys
24
import warnings
25
26
27
28
from dataclasses import dataclass, field
from typing import List, Optional, Tuple

import datasets
29
import evaluate
30
import numpy as np
31
from datasets import load_dataset
32
from trainer_seq2seq_qa import QuestionAnsweringSeq2SeqTrainer
33
34
35
36
37
38
39
40
41
42
43

import transformers
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
    Seq2SeqTrainingArguments,
    set_seed,
)
44
from transformers.trainer_utils import EvalLoopOutput, EvalPrediction, get_last_checkpoint
45
from transformers.utils import check_min_version, send_example_telemetry
46
47
48
49
from transformers.utils.versions import require_version


# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
50
check_min_version("4.32.0.dev0")
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
84
85
    token: str = field(
        default=None,
86
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
87
            "help": (
88
89
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
90
            )
91
92
        },
    )
93
94
95
96
97
98
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    context_column: Optional[str] = field(
        default="context",
        metadata={"help": "The name of the column in the datasets containing the contexts (for question answering)."},
    )
    question_column: Optional[str] = field(
        default="question",
        metadata={"help": "The name of the column in the datasets containing the questions (for question answering)."},
    )
    answer_column: Optional[str] = field(
        default="answers",
        metadata={"help": "The name of the column in the datasets containing the answers (for question answering)."},
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_seq_length: int = field(
        default=384,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
144
145
146
147
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
148
149
150
151
152
        },
    )
    max_answer_length: int = field(
        default=30,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
153
154
155
156
            "help": (
                "The maximum length of an answer that can be generated. This is needed because the start "
                "and end predictions are not conditioned on one another."
            )
157
158
159
160
161
        },
    )
    val_max_answer_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
162
163
164
165
166
167
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded. Will default to `max_answer_length`."
                "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
                "during ``evaluate`` and ``predict``."
            )
168
169
170
171
172
        },
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174
175
176
            "help": (
                "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when"
                " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)."
            )
177
178
179
180
181
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
182
183
184
185
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
186
187
188
189
190
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
191
192
193
194
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
195
196
197
198
199
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
200
201
202
203
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
204
205
206
207
208
209
210
211
        },
    )
    version_2_with_negative: bool = field(
        default=False, metadata={"help": "If true, some of the examples do not have an answer."}
    )
    null_score_diff_threshold: float = field(
        default=0.0,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
212
213
214
215
216
            "help": (
                "The threshold used to select the null answer: if the best answer has a score that is less than "
                "the score of the null answer minus this threshold, the null answer is selected for this example. "
                "Only useful when `version_2_with_negative=True`."
            )
217
218
219
220
221
222
223
224
225
226
227
228
229
        },
    )
    doc_stride: int = field(
        default=128,
        metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
    )
    n_best_size: int = field(
        default=20,
        metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
230
231
232
233
            "help": (
                "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
                "which is used during ``evaluate`` and ``predict``."
            )
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        },
    )
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )

    def __post_init__(self):
        if (
            self.dataset_name is None
            and self.train_file is None
            and self.validation_file is None
            and self.test_file is None
        ):
            raise ValueError("Need either a dataset name or a training/validation file/test_file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
            if self.test_file is not None:
                extension = self.test_file.split(".")[-1]
                assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
        if self.val_max_answer_length is None:
            self.val_max_answer_length = self.max_answer_length


question_answering_column_name_mapping = {
    "squad_v2": ("question", "context", "answer"),
}


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

283
284
285
286
287
288
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

289
290
291
292
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_seq2seq_qa", model_args, data_args)

293
294
295
296
297
298
299
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

300
301
302
303
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

304
305
306
307
308
309
310
311
312
313
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
314
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
348
349
350
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
351
            token=model_args.token,
352
353
354
355
356
357
358
359
360
361
362
363
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
364
365
366
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
Sylvain Gugger's avatar
Sylvain Gugger committed
367
            field="data",
368
            cache_dir=model_args.cache_dir,
369
            token=model_args.token,
370
        )
371
372
373
374
375
376
377
378
379
380
381
382
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
383
        token=model_args.token,
384
385
386
387
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
388
        use_fast=model_args.use_fast_tokenizer,
389
        revision=model_args.model_revision,
390
        token=model_args.token,
391
392
393
394
395
396
397
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
398
        token=model_args.token,
399
400
    )

401
402
403
404
405
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

    # Preprocessing the datasets.
    # We need to generate and tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    elif training_args.do_predict:
        column_names = raw_datasets["test"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return

    # Get the column names for input/target.
    dataset_columns = question_answering_column_name_mapping.get(data_args.dataset_name, None)
    if data_args.question_column is None:
        question_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        question_column = data_args.question_column
        if question_column not in column_names:
            raise ValueError(
                f"--question_column' value '{data_args.question_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.context_column is None:
        context_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        context_column = data_args.context_column
        if context_column not in column_names:
            raise ValueError(
                f"--context_column' value '{data_args.context_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.answer_column is None:
        answer_column = dataset_columns[2] if dataset_columns is not None else column_names[2]
    else:
        answer_column = data_args.answer_column
        if answer_column not in column_names:
            raise ValueError(
                f"--answer_column' value '{data_args.answer_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Temporarily set max_answer_length for training.
    max_answer_length = data_args.max_answer_length
    padding = "max_length" if data_args.pad_to_max_length else False

    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
        logger.warning(
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

466
    def preprocess_squad_batch(
467
468
469
470
471
472
473
474
475
476
        examples,
        question_column: str,
        context_column: str,
        answer_column: str,
    ) -> Tuple[List[str], List[str]]:
        questions = examples[question_column]
        contexts = examples[context_column]
        answers = examples[answer_column]

        def generate_input(_question, _context):
477
            return " ".join(["question:", _question.lstrip(), "context:", _context.lstrip()])
478
479
480
481
482
483

        inputs = [generate_input(question, context) for question, context in zip(questions, contexts)]
        targets = [answer["text"][0] if len(answer["text"]) > 0 else "" for answer in answers]
        return inputs, targets

    def preprocess_function(examples):
484
        inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column)
485
486

        model_inputs = tokenizer(inputs, max_length=max_seq_length, padding=padding, truncation=True)
487
488
        # Tokenize targets with text_target=...
        labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True)
489
490
491
492
493
494
495
496
497
498
499

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

500
501
502
503
504
505
506
507
508
    # Validation preprocessing
    def preprocess_validation_function(examples):
        inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column)

        model_inputs = tokenizer(
            inputs,
            max_length=max_seq_length,
            padding=padding,
            truncation=True,
509
            return_overflowing_tokens=True,
510
            return_offsets_mapping=True,
511
        )
512
513
        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True)
514

515
516
517
518
519
520
521
        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

522
523
524
525
526
527
528
        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = model_inputs.pop("overflow_to_sample_mapping")

        # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
        # corresponding example_id and we will store the offset mappings.
        model_inputs["example_id"] = []
529
530
        # Augment the overflowing tokens to the labels
        labels_out = []
531
532
533
534
535

        for i in range(len(model_inputs["input_ids"])):
            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            model_inputs["example_id"].append(examples["id"][sample_index])
536
            labels_out.append(labels["input_ids"][sample_index])
537

538
        model_inputs["labels"] = labels_out
539
540
        return model_inputs

541
542
543
544
545
546
    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            # We will select sample from whole data if agument is specified
547
548
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
549
550
551
552
553
554
555
556
557
558
559
560
        # Create train feature from dataset
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
        if data_args.max_train_samples is not None:
            # Number of samples might increase during Feature Creation, We select only specified max samples
561
562
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
563
564
565
566
567
568
569

    if training_args.do_eval:
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_examples = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            # We will select sample from whole data
570
571
            max_eval_samples = min(len(eval_examples), data_args.max_eval_samples)
            eval_examples = eval_examples.select(range(max_eval_samples))
572
573
574
        # Validation Feature Creation
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_examples.map(
575
                preprocess_validation_function,
576
577
578
579
580
581
582
583
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
        if data_args.max_eval_samples is not None:
            # During Feature creation dataset samples might increase, we will select required samples again
584
585
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
586
587
588
589
590
591
592
593
594
595
596

    if training_args.do_predict:
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_examples = raw_datasets["test"]
        if data_args.max_predict_samples is not None:
            # We will select sample from whole data
            predict_examples = predict_examples.select(range(data_args.max_predict_samples))
        # Predict Feature Creation
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_examples.map(
597
                preprocess_validation_function,
598
599
600
601
602
603
604
605
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
        if data_args.max_predict_samples is not None:
            # During Feature creation dataset samples might increase, we will select required samples again
606
607
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
608
609
610
611
612
613
614
615
616
617

    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )

618
    metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad")
619

620
621
    def compute_metrics(p: EvalPrediction):
        return metric.compute(predictions=p.predictions, references=p.label_ids)
622

623
624
625
626
627
628
    # Post-processing:
    def post_processing_function(
        examples: datasets.Dataset, features: datasets.Dataset, outputs: EvalLoopOutput, stage="eval"
    ):
        # Decode the predicted tokens.
        preds = outputs.predictions
629
630
        if isinstance(preds, tuple):
            preds = preds[0]
631
632
        # Replace -100s used for padding as we can't decode them
        preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

        # Build a map example to its corresponding features.
        example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
        feature_per_example = {example_id_to_index[feature["example_id"]]: i for i, feature in enumerate(features)}
        predictions = {}
        # Let's loop over all the examples!
        for example_index, example in enumerate(examples):
            # This is the index of the feature associated to the current example.
            feature_index = feature_per_example[example_index]
            predictions[example["id"]] = decoded_preds[feature_index]

        # Format the result to the format the metric expects.
        if data_args.version_2_with_negative:
            formatted_predictions = [
                {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
            ]
        else:
            formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]

        references = [{"id": ex["id"], "answers": ex[answer_column]} for ex in examples]
        return EvalPrediction(predictions=formatted_predictions, label_ids=references)
655
656

    # Initialize our Trainer
657
    trainer = QuestionAnsweringSeq2SeqTrainer(
658
659
660
661
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
662
        eval_examples=eval_examples if training_args.do_eval else None,
663
664
        tokenizer=tokenizer,
        data_collator=data_collator,
665
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
666
        post_process_function=post_processing_function,
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    max_length = (
        training_args.generation_max_length
        if training_args.generation_max_length is not None
        else data_args.val_max_answer_length
    )
    num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")

        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
        results = trainer.predict(predict_dataset, predict_examples)
        metrics = results.metrics

        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

    if training_args.push_to_hub:
        kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"}
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name

        trainer.push_to_hub(**kwargs)


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()