modeling_xlm.py 49.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLM model.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from __future__ import absolute_import, division, print_function, unicode_literals

import copy
import json
import logging
import math
import os
import sys
from io import open

import math
import itertools
import numpy as np

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import CrossEntropyLoss, MSELoss

from .file_utils import cached_path
39
from .model_utils import CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-config.json",
}

DECODER_ONLY_PARAMS = [
    'layer_norm15.%i.weight', 'layer_norm15.%i.bias',
    'encoder_attn.%i.q_lin.weight', 'encoder_attn.%i.q_lin.bias',
    'encoder_attn.%i.k_lin.weight', 'encoder_attn.%i.k_lin.bias',
    'encoder_attn.%i.v_lin.weight', 'encoder_attn.%i.v_lin.bias',
    'encoder_attn.%i.out_lin.weight', 'encoder_attn.%i.out_lin.bias'
]

TRANSFORMER_LAYER_PARAMS = [
    'attentions.%i.q_lin.weight', 'attentions.%i.q_lin.bias',
    'attentions.%i.k_lin.weight', 'attentions.%i.k_lin.bias',
    'attentions.%i.v_lin.weight', 'attentions.%i.v_lin.bias',
    'attentions.%i.out_lin.weight', 'attentions.%i.out_lin.bias',
    'layer_norm1.%i.weight', 'layer_norm1.%i.bias',
    'ffns.%i.lin1.weight', 'ffns.%i.lin1.bias',
    'ffns.%i.lin2.weight', 'ffns.%i.lin2.bias',
    'layer_norm2.%i.weight', 'layer_norm2.%i.bias'
]

class XLMConfig(PretrainedConfig):
    """Configuration class to store the configuration of a `XLMModel`.
    """
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP

    def __init__(self,
                 vocab_size_or_config_json_file,
thomwolf's avatar
thomwolf committed
76
                 causal=True,
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
                 ff_activation="gelu",
                 untie_r=True,
                 attn_type="bi",

                 max_position_embeddings=512,
                 initializer_range=0.02,
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 dropatt=0.1,
                 init="normal",
                 init_range=0.1,
                 init_std=0.02,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
                 same_length=False):
        """Constructs XLMConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLMModel`.
            d_model: Size of the encoder layers and the pooler layer.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            d_inner: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            ff_activation: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            untie_r: untie relative position biases
            attn_type: 'bi' for XLM, 'uni' for Transformer-XL

            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.

            dropout: float, dropout rate.
            dropatt: float, dropout rate on attention probabilities.
            init: str, the initialization scheme, either "normal" or "uniform".
            init_range: float, initialize the parameters with a uniform distribution
                in [-init_range, init_range]. Only effective when init="uniform".
            init_std: float, initialize the parameters with a normal distribution
                with mean 0 and stddev init_std. Only effective when init="normal".
            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
        """
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
149
            self.causal = causal
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
            self.attn_type = attn_type

            self.max_position_embeddings = max_position_embeddings
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps

            self.init = init
            self.init_range = init_range
            self.init_std = init_std
            self.dropout = dropout
            self.dropatt = dropatt
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")


try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLMLayerNorm
except ImportError:
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
    class XLMLayerNorm(nn.Module):
        def __init__(self, d_model, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(XLMLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(d_model))
            self.bias = nn.Parameter(torch.zeros(d_model))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias


def Embedding(num_embeddings, embedding_dim, padding_idx=None):
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
    if padding_idx is not None:
        nn.init.constant_(m.weight[padding_idx], 0)
    return m


def Linear(in_features, out_features, bias=True):
    m = nn.Linear(in_features, out_features, bias)
    # nn.init.normal_(m.weight, mean=0, std=1)
    # nn.init.xavier_uniform_(m.weight)
    # nn.init.constant_(m.bias, 0.)
    return m


def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()
    out.requires_grad = False


def gelu(x):
    """
    GELU activation
    https://arxiv.org/abs/1606.08415
    https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/model_pytorch.py#L14
    https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/modeling.py
    """
    # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))


def get_masks(slen, lengths, causal):
    """
    Generate hidden states mask, and optionally an attention mask.
    """
    assert lengths.max().item() <= slen
    bs = lengths.size(0)
    alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
    mask = alen < lengths[:, None]

    # attention mask is the same as mask, or triangular inferior attention (causal)
    if causal:
        attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
    else:
        attn_mask = mask

    # sanity check
    assert mask.size() == (bs, slen)
    assert causal is False or attn_mask.size() == (bs, slen, slen)

    return mask, attn_mask


class MultiHeadAttention(nn.Module):

    NEW_ID = itertools.count()

    def __init__(self, n_heads, dim, dropout):
        super().__init__()
        self.layer_id = next(MultiHeadAttention.NEW_ID)
        self.dim = dim
        self.n_heads = n_heads
        self.dropout = dropout
        assert self.dim % self.n_heads == 0

        self.q_lin = Linear(dim, dim)
        self.k_lin = Linear(dim, dim)
        self.v_lin = Linear(dim, dim)
        self.out_lin = Linear(dim, dim)

    def forward(self, input, mask, kv=None, cache=None):
        """
        Self-attention (if kv is None) or attention over source sentence (provided by kv).
        """
        # Input is (bs, qlen, dim)
        # Mask is (bs, klen) (non-causal) or (bs, klen, klen)
        bs, qlen, dim = input.size()
        if kv is None:
            klen = qlen if cache is None else cache['slen'] + qlen
        else:
            klen = kv.size(1)
        assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
        n_heads = self.n_heads
        dim_per_head = dim // n_heads
        mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)

        def shape(x):
            """  projection """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """  compute context """
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)

        q = shape(self.q_lin(input))                                          # (bs, n_heads, qlen, dim_per_head)
        if kv is None:
            k = shape(self.k_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
        elif cache is None or self.layer_id not in cache:
            k = v = kv
            k = shape(self.k_lin(k))                                          # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(v))                                          # (bs, n_heads, qlen, dim_per_head)

        if cache is not None:
            if self.layer_id in cache:
                if kv is None:
                    k_, v_ = cache[self.layer_id]
                    k = torch.cat([k_, k], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                    v = torch.cat([v_, v], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                else:
                    k, v = cache[self.layer_id]
            cache[self.layer_id] = (k, v)

        q = q / math.sqrt(dim_per_head)                                       # (bs, n_heads, qlen, dim_per_head)
        scores = torch.matmul(q, k.transpose(2, 3))                           # (bs, n_heads, qlen, klen)
        mask = (mask == 0).view(mask_reshape).expand_as(scores)               # (bs, n_heads, qlen, klen)
        scores.masked_fill_(mask, -float('inf'))                              # (bs, n_heads, qlen, klen)

        weights = F.softmax(scores.float(), dim=-1).type_as(scores)           # (bs, n_heads, qlen, klen)
        weights = F.dropout(weights, p=self.dropout, training=self.training)  # (bs, n_heads, qlen, klen)
        context = torch.matmul(weights, v)                                    # (bs, n_heads, qlen, dim_per_head)
        context = unshape(context)                                            # (bs, qlen, dim)

        return self.out_lin(context)


class TransformerFFN(nn.Module):

    def __init__(self, in_dim, dim_hidden, out_dim, dropout, gelu_activation):
        super().__init__()
        self.dropout = dropout
        self.lin1 = Linear(in_dim, dim_hidden)
        self.lin2 = Linear(dim_hidden, out_dim)
        self.act = gelu if gelu_activation else F.relu

    def forward(self, input):
        x = self.lin1(input)
        x = self.act(x)
        x = self.lin2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        return x


class BeamHypotheses(object):

    def __init__(self, n_hyp, max_len, length_penalty, early_stopping):
        """
        Initialize n-best list of hypotheses.
        """
        self.max_len = max_len - 1  # ignoring <BOS>
        self.length_penalty = length_penalty
        self.early_stopping = early_stopping
        self.n_hyp = n_hyp
        self.hyp = []
        self.worst_score = 1e9

    def __len__(self):
        """
        Number of hypotheses in the list.
        """
        return len(self.hyp)

    def add(self, hyp, sum_logprobs):
        """
        Add a new hypothesis to the list.
        """
        score = sum_logprobs / len(hyp) ** self.length_penalty
        if len(self) < self.n_hyp or score > self.worst_score:
            self.hyp.append((score, hyp))
            if len(self) > self.n_hyp:
                sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.hyp)])
                del self.hyp[sorted_scores[0][1]]
                self.worst_score = sorted_scores[1][0]
            else:
                self.worst_score = min(score, self.worst_score)

    def is_done(self, best_sum_logprobs):
        """
        If there are enough hypotheses and that none of the hypotheses being generated
        can become better than the worst one in the heap, then we are done with this sentence.
        """
        if len(self) < self.n_hyp:
            return False
        elif self.early_stopping:
            return True
        else:
            return self.worst_score >= best_sum_logprobs / self.max_len ** self.length_penalty


395
class XLMPreTrainedModel(PreTrainedModel):
396
397
398
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
399
400
401
402
403
404
405
    config_class = XLMConfig
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = None
    base_model_prefix = "xlm"

    def __init__(self, *inputs, **kwargs):
        super(XLMPreTrainedModel, self).__init__(*inputs, **kwargs)
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, XLMLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, XLMRelativeAttention):
            for param in [module.q, module.k, module.v, module.o, module.r,
                          module.r_r_bias, module.r_s_bias, module.r_w_bias,
                          module.seg_embed]:
                param.data.normal_(mean=0.0, std=self.config.initializer_range)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


class XLMModel(XLMPreTrainedModel):

    ATTRIBUTES = ['encoder', 'eos_index', 'pad_index',  # 'with_output', 
                  'n_langs', 'n_words', 'dim', 'n_layers', 'n_heads', 
                  'hidden_dim', 'dropout', 'attention_dropout', 'asm',
                  'asm_cutoffs', 'asm_div_value']

thomwolf's avatar
thomwolf committed
433
    def __init__(self, params, output_attentions=False, output_hidden_states=False):  #, dico, is_encoder, with_output):
thomwolf's avatar
thomwolf committed
434
435
436
        """ XLM model from: "Cross-lingual Language Model Pretraining" by Guillaume Lample, Alexis Conneau
            Paper: https://arxiv.org/abs/1901.07291
            Original code: https://github.com/facebookresearch/XLM
thomwolf's avatar
thomwolf committed
437
438

        Params:
thomwolf's avatar
thomwolf committed
439
            `config`: a XLMConfig class instance with the configuration to build a new model
thomwolf's avatar
thomwolf committed
440
441
442
443
444
445
446
447
448
449
            `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
            `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
                This can be used to compute head importance metrics. Default: False

        Inputs:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
thomwolf's avatar
thomwolf committed
450
                a `sentence B` token (see XLM paper for more details).
thomwolf's avatar
thomwolf committed
451
452
453
454
455
456
457
458
459
460
461
462
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


        Outputs: Tuple of (encoded_layers, pooled_output)
            `encoded_layers`: controled by `output_all_encoded_layers` argument:
                - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
thomwolf's avatar
thomwolf committed
463
                    of each attention block (i.e. 12 full sequences for XLM-base, 24 for XLM-large), each
thomwolf's avatar
thomwolf committed
464
465
466
467
468
                    encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
                - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                    to the last attention block of shape [batch_size, sequence_length, hidden_size],
            `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
                classifier pretrained on top of the hidden state associated to the first character of the
thomwolf's avatar
thomwolf committed
469
                input (`CLS`) to train on the Next-Sentence task (see XLM's paper).
thomwolf's avatar
thomwolf committed
470
471
472
473
474
475
476
477

        Example usage:
        ```python
        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
        input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
        token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

thomwolf's avatar
thomwolf committed
478
        config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
thomwolf's avatar
thomwolf committed
479
480
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

thomwolf's avatar
thomwolf committed
481
        model = modeling.XLMModel(config=config)
thomwolf's avatar
thomwolf committed
482
483
        all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
        ```
484
485
486
        """
        super(XLMModel, self).__init__(params)
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
487
        self.output_hidden_states = output_hidden_states
488
489
490
491
492

        # encoder / decoder, output layer
        # self.is_encoder = is_encoder
        # self.is_decoder = not is_encoder
        # self.with_output = with_output
thomwolf's avatar
thomwolf committed
493
        self.causal = params.causal
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

        # dictionary / languages
        self.n_langs = params.n_langs
        self.n_words = params.n_words
        self.eos_index = params.eos_index
        self.pad_index = params.pad_index
        # self.dico = dico
        self.id2lang = params.id2lang
        self.lang2id = params.lang2id
        # assert len(self.dico) == self.n_words
        assert len(self.id2lang) == len(self.lang2id) == self.n_langs

        # model parameters
        self.dim = params.emb_dim       # 512 by default
        self.hidden_dim = self.dim * 4  # 2048 by default
        self.n_heads = params.n_heads   # 8 by default
        self.n_layers = params.n_layers
        self.dropout = params.dropout
        self.attention_dropout = params.attention_dropout
        assert self.dim % self.n_heads == 0, 'transformer dim must be a multiple of n_heads'

        # embeddings
        self.position_embeddings = Embedding(params.max_position_embeddings, self.dim)
        if params.sinusoidal_embeddings:
            create_sinusoidal_embeddings(params.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
        if params.n_langs > 1:
            self.lang_embeddings = Embedding(self.n_langs, self.dim)
        self.embeddings = Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
        self.layer_norm_emb = nn.LayerNorm(self.dim, eps=1e-12)

        # transformer layers
        self.attentions = nn.ModuleList()
        self.layer_norm1 = nn.ModuleList()
        self.ffns = nn.ModuleList()
        self.layer_norm2 = nn.ModuleList()
        if self.is_decoder:
            self.layer_norm15 = nn.ModuleList()
            self.encoder_attn = nn.ModuleList()

        for _ in range(self.n_layers):
            self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
            self.layer_norm1.append(nn.LayerNorm(self.dim, eps=1e-12))
            if self.is_decoder:
                self.layer_norm15.append(nn.LayerNorm(self.dim, eps=1e-12))
                self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
            self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, dropout=self.dropout, gelu_activation=params.gelu_activation))
            self.layer_norm2.append(nn.LayerNorm(self.dim, eps=1e-12))

thomwolf's avatar
thomwolf committed
542
    def forward(self, x, lengths, positions=None, langs=None, cache=None, head_mask=None):  # src_enc=None, src_len=None, 
543
544
        """
        Inputs:
thomwolf's avatar
thomwolf committed
545
            `x` LongTensor(bs, slen), containing word indices
546
547
            `lengths` LongTensor(bs), containing the length of each sentence
            `causal` Boolean, if True, the attention is only done over previous hidden states
thomwolf's avatar
thomwolf committed
548
549
            `positions` LongTensor(bs, slen), containing word positions
            `langs` LongTensor(bs, slen), containing language IDs
550
551
552
553
554
        """
        # lengths = (x != self.pad_index).float().sum(dim=1)
        # mask = x != self.pad_index

        # check inputs
thomwolf's avatar
thomwolf committed
555
        bs, slen = x.size()
556
557
        assert lengths.size(0) == bs
        assert lengths.max().item() <= slen
thomwolf's avatar
thomwolf committed
558
559
560
561
562
        # x = x.transpose(0, 1)  # batch size as dimension 0
        # assert (src_enc is None) == (src_len is None)
        # if src_enc is not None:
        #     assert self.is_decoder
        #     assert src_enc.size(0) == bs
563
564

        # generate masks
thomwolf's avatar
thomwolf committed
565
566
567
        mask, attn_mask = get_masks(slen, lengths, self.causal)
        # if self.is_decoder and src_enc is not None:
        #     src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
568
569
570
571
572
573

        # positions
        if positions is None:
            positions = x.new(slen).long()
            positions = torch.arange(slen, out=positions).unsqueeze(0)
        else:
thomwolf's avatar
thomwolf committed
574
575
            assert positions.size() == (bs, slen)  # (slen, bs)
            # positions = positions.transpose(0, 1)
576
577
578

        # langs
        if langs is not None:
thomwolf's avatar
thomwolf committed
579
580
            assert langs.size() == (bs, slen)  # (slen, bs)
            # langs = langs.transpose(0, 1)
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

        # do not recompute cached elements
        if cache is not None:
            _slen = slen - cache['slen']
            x = x[:, -_slen:]
            positions = positions[:, -_slen:]
            if langs is not None:
                langs = langs[:, -_slen:]
            mask = mask[:, -_slen:]
            attn_mask = attn_mask[:, -_slen:]

        # embeddings
        tensor = self.embeddings(x)
        tensor = tensor + self.position_embeddings(positions).expand_as(tensor)
        if langs is not None:
            tensor = tensor + self.lang_embeddings(langs)
        tensor = self.layer_norm_emb(tensor)
        tensor = F.dropout(tensor, p=self.dropout, training=self.training)
        tensor *= mask.unsqueeze(-1).to(tensor.dtype)

        # transformer layers
thomwolf's avatar
thomwolf committed
602
603
        hidden_states = []
        attentions = []
604
        for i in range(self.n_layers):
thomwolf's avatar
thomwolf committed
605
606
            if self.output_hidden_states:
                hidden_states.append(tensor)
607
608

            # self attention
thomwolf's avatar
thomwolf committed
609
610
611
612
            attn_outputs = self.attentions[i](tensor, attn_mask, cache=cache, head_mask=head_mask[i])
            attn = attn_outputs[0]
            if self.output_attentions:
                attentions.append(attn_outputs[1])
613
614
615
616
617
            attn = F.dropout(attn, p=self.dropout, training=self.training)
            tensor = tensor + attn
            tensor = self.layer_norm1[i](tensor)

            # encoder attention (for decoder only)
thomwolf's avatar
thomwolf committed
618
619
620
621
622
            # if self.is_decoder and src_enc is not None:
            #     attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
            #     attn = F.dropout(attn, p=self.dropout, training=self.training)
            #     tensor = tensor + attn
            #     tensor = self.layer_norm15[i](tensor)
623
624
625
626
627
628

            # FFN
            tensor = tensor + self.ffns[i](tensor)
            tensor = self.layer_norm2[i](tensor)
            tensor *= mask.unsqueeze(-1).to(tensor.dtype)

thomwolf's avatar
thomwolf committed
629
630
631
632
        # Add last hidden state
        if self.output_hidden_states:
            hidden_states.append(tensor)

633
634
635
636
637
        # update cache length
        if cache is not None:
            cache['slen'] += tensor.size(1)

        # move back sequence length to dimension 0
thomwolf's avatar
thomwolf committed
638
        # tensor = tensor.transpose(0, 1)
639

thomwolf's avatar
thomwolf committed
640
        outputs = [tensor]
641
642
        if self.output_hidden_states:
            outputs.append(hidden_states)
thomwolf's avatar
thomwolf committed
643
644
645
        if self.output_attentions:
            outputs.append(attentions)
        return outputs  # outputs, (hidden_states), (attentions)
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692


class XLMPredLayer(nn.Module):
    """
    Prediction layer (cross_entropy or adaptive_softmax).
    """
    def __init__(self, params):
        super().__init__()
        self.asm = params.asm
        self.n_words = params.n_words
        self.pad_index = params.pad_index
        dim = params.emb_dim

        if params.asm is False:
            self.proj = Linear(dim, params.n_words, bias=True)
        else:
            self.proj = nn.AdaptiveLogSoftmaxWithLoss(
                in_features=dim,
                n_classes=params.n_words,
                cutoffs=params.asm_cutoffs,
                div_value=params.asm_div_value,
                head_bias=True,  # default is False
            )

    def forward(self, x, y, get_scores=False):
        """
        Compute the loss, and optionally the scores.
        """
        assert (y == self.pad_index).sum().item() == 0

        if self.asm is False:
            scores = self.proj(x).view(-1, self.n_words)
            loss = F.cross_entropy(scores, y, reduction='elementwise_mean')
        else:
            _, loss = self.proj(x, y)
            scores = self.proj.log_prob(x) if get_scores else None

        return scores, loss

    def get_scores(self, x):
        """
        Compute scores.
        """
        assert x.dim() == 2
        return self.proj.log_prob(x) if self.asm else self.proj(x)


thomwolf's avatar
thomwolf committed
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745

class XLMWithLMHeadModel(XLMPreTrainedModel):
        """ XLM model from: "Cross-lingual Language Model Pretraining" by Guillaume Lample, Alexis Conneau
            Paper: https://arxiv.org/abs/1901.07291
            Original code: https://github.com/facebookresearch/XLM

        Params:
            `config`: a XLMConfig class instance with the configuration to build a new model
            `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
            `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
                This can be used to compute head importance metrics. Default: False

        Inputs:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see XLM paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


        Outputs: Tuple of (encoded_layers, pooled_output)
            `encoded_layers`: controled by `output_all_encoded_layers` argument:
                - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                    of each attention block (i.e. 12 full sequences for XLM-base, 24 for XLM-large), each
                    encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
                - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                    to the last attention block of shape [batch_size, sequence_length, hidden_size],
            `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
                classifier pretrained on top of the hidden state associated to the first character of the
                input (`CLS`) to train on the Next-Sentence task (see XLM's paper).

        Example usage:
        ```python
        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
        input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
        token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

        config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = modeling.XLMModel(config=config)
        all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
        ```
        """
746
    def __init__(self, config, output_attentions=False, output_hidden_states=False):
747
748
        super(XLMLMHeadModel, self).__init__(config)
        self.output_attentions = output_attentions
749
750
        self.output_hidden_states = output_hidden_states

751
752
753
        self.attn_type = config.attn_type
        self.same_length = config.same_length

754
        self.transformer = XLMModel(config, output_attentions=output_attentions, output_hidden_states=output_hidden_states)
thomwolf's avatar
thomwolf committed
755
        self.pred_layer = XLMPredLayer(config)
756
757
758
759
760
761
762

        self.apply(self.init_weights)
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the embeddings
        """
thomwolf's avatar
thomwolf committed
763
        self.pred_layer.proj.weight = self.transformer.embeddings.weight
764

thomwolf's avatar
thomwolf committed
765
    def forward(self, x, lengths, positions=None, langs=None, cache=None,
766
                labels=None, head_mask=None):
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
        """
        Args:
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
                0 for real tokens and 1 for padding.
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
thomwolf's avatar
thomwolf committed
793
        transformer_outputs = self.transformer(x, lengths, positions=positions, langs=langs, cache=cache, head_mask=head_mask)
794

795
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
796
        logits = self.pred_layer(output, labels)
797

798
799
        outputs = transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here

800
801
802
803
804
        if labels is not None:
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
                            labels.view(-1))
805
806
807
            outputs = [loss] + outputs

        outputs = [logits] + outputs
808

809
        return outputs
810
811
812


class XLMSequenceSummary(nn.Module):
813
    def __init__(self, config, summary_type="last", use_proj=True):
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
        super(XLMSequenceSummary, self).__init__()
        self.summary_type = summary_type
        if use_proj:
            self.summary = nn.Linear(config.d_model, config.d_model)
        else:
            self.summary = None
        if summary_type == 'attn':
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError
        self.dropout = nn.Dropout(config.dropout)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        """ hidden_states: float Tensor in shape [bsz, seq_len, d_model], the hidden-states of the last layer."""
        if self.summary_type == 'last':
            output = hidden_states[:, -1]
        elif self.summary_type == 'first':
            output = hidden_states[:, 0]
        elif self.summary_type == 'mean':
            output = hidden_states.mean(dim=1)
        elif summary_type == 'attn':
            raise NotImplementedError

        output = self.summary(output)
        output = self.activation(output)
        output = self.dropout(output)
        return output


class XLMForSequenceClassification(XLMPreTrainedModel):
    """XLM model ("XLM: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLMConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `summary_type`: str, "last", "first", "mean", or "attn". The method
            to pool the input to get a vector representation. Default: last

    Inputs:
        inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
        input_mask: float32 Tensor in shape [bsz, len], the input mask.
            0 for real tokens and 1 for padding.
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
thomwolf's avatar
thomwolf committed
863
            Added for easy compatibility with the XLM model (which uses this negative masking).
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
            You can only uses one among `input_mask` and `attention_mask`
        mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


    Outputs: Tuple of (logits or loss, mems)
        `logits or loss`:
            if labels is None:
                Token logits with shape [batch_size, sequence_length] 
            else:
                CrossEntropy loss with the targets
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, d_model=768,
        n_layer=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.XLMModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config, summary_type="last", use_proj=True, num_labels=2,
910
                 output_attentions=False, output_hidden_states=False):
911
912
        super(XLMForSequenceClassification, self).__init__(config)
        self.output_attentions = output_attentions
913
914
        self.output_hidden_states = output_hidden_states

915
916
917
        self.summary_type = summary_type
        self.num_labels = num_labels

918
        self.transformer = XLMModel(config, output_attentions=output_attentions, output_hidden_states=output_hidden_states)
919

920
        self.sequence_summary = XLMSequenceSummary(config, summary_type=summary_type, use_proj=use_proj)
921
922
923
924
925
        self.logits_proj = nn.Linear(config.d_model, num_labels)
        self.apply(self.init_weights)

    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
926
                labels=None, head_mask=None):
927
928
929
930
931
932
933
934
        """
        Args:
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
                0 for real tokens and 1 for padding.
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
thomwolf's avatar
thomwolf committed
935
                Added for easy compatibility with the XLM model (which uses this negative masking).
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
                You can only uses one among `input_mask` and `attention_mask`
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.
        """
954
955
        transformer_outputs = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
956

957
        output = transformer_outputs[0]
958
959
960
        output = self.sequence_summary(output)
        logits = self.logits_proj(output)

961
962
        outputs = transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here

963
964
965
966
967
968
969
970
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
971
972
973
            outputs = [loss] + outputs

        outputs = [logits] + outputs
974

975
        return outputs
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997


class XLMForQuestionAnswering(XLMPreTrainedModel):
    """XLM model for Question Answering (span extraction).
    This module is composed of the XLM model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
        `config`: a XLMConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see XLM paper for more details).
        `attention_mask`: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
thomwolf's avatar
thomwolf committed
998
            Added for easy compatibility with the XLM model (which uses this negative masking).
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
            You can only uses one among `input_mask` and `attention_mask`
        `input_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
            position tokens of shape [batch_size, sequence_length].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = XLMConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = XLMForQuestionAnswering(config)
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1034
    def __init__(self, config, output_attentions=False, output_hidden_states=False):
1035
1036
        super(XLMForQuestionAnswering, self).__init__(config)
        self.output_attentions = output_attentions
1037
1038
1039
        self.output_hidden_states = output_hidden_states

        self.transformer = XLMModel(config, output_attentions=output_attentions, output_hidden_states=output_hidden_states)
1040
1041
1042
1043
1044
        self.qa_outputs = nn.Linear(config.hidden_size, 2)
        self.apply(self.init_weights)

    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1045
1046
1047
1048
                start_positions=None, end_positions=None, head_mask=None):

        transformer_outputs = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
1049

1050
        output = transformer_outputs[0]
1051
1052
1053
1054
1055
        logits = self.qa_outputs(output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1056
1057
        outputs = transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1073
1074
1075
1076
1077
            outputs = [total_loss] + outputs

        outputs = [start_logits, end_logits] + outputs

        return outputs