test_modeling_bert.py 19.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
thomwolf's avatar
thomwolf committed
24

Aymeric Augustin's avatar
Aymeric Augustin committed
25

26
if is_torch_available():
27
28
29
    from transformers import (
        BertConfig,
        BertModel,
30
        BertLMHeadModel,
31
32
33
34
35
36
37
38
        BertForMaskedLM,
        BertForNextSentencePrediction,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
        BertForTokenClassification,
        BertForMultipleChoice,
    )
39
    from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
40

thomwolf's avatar
thomwolf committed
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
class BertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = BertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )
thomwolf's avatar
thomwolf committed
124

125
126
127
        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def prepare_config_and_inputs_for_decoder(self):
128
        (
129
130
131
132
133
134
135
136
137
138
139
140
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
thomwolf's avatar
thomwolf committed
141

142
        return (
143
144
145
146
147
148
149
150
151
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        )

    def check_loss_output(self, result):
        self.parent.assertListEqual(list(result["loss"].size()), [])

    def create_and_check_bert_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertModel(config=config)
        model.to(torch_device)
        model.eval()
        sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
        sequence_output, pooled_output = model(input_ids)

        result = {
            "sequence_output": sequence_output,
            "pooled_output": pooled_output,
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
        )
        self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])

    def create_and_check_bert_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = BertModel(config)
        model.to(torch_device)
        model.eval()
        sequence_output, pooled_output = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        sequence_output, pooled_output = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
        sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)

        result = {
            "sequence_output": sequence_output,
            "pooled_output": pooled_output,
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
        )
        self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    def create_and_check_bert_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = BertLMHeadModel(config=config)
        model.to(torch_device)
        model.eval()
        loss, prediction_scores = model(
            input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
        )
        result = {
            "loss": loss,
            "prediction_scores": prediction_scores,
        }
        self.parent.assertListEqual(
            list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
        )
        self.check_loss_output(result)

242
243
244
245
246
247
248
    def create_and_check_bert_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
        loss, prediction_scores = model(
249
            input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
250
251
252
253
254
255
256
257
258
259
        )
        result = {
            "loss": loss,
            "prediction_scores": prediction_scores,
        }
        self.parent.assertListEqual(
            list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
        )
        self.check_loss_output(result)

260
    def create_and_check_bert_model_for_causal_lm_as_decoder(
261
262
263
264
265
266
267
268
269
270
271
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
272
        model = BertLMHeadModel(config=config)
273
274
275
276
277
278
        model.to(torch_device)
        model.eval()
        loss, prediction_scores = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
279
            labels=token_labels,
280
281
282
283
284
285
286
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        loss, prediction_scores = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
287
            labels=token_labels,
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
            encoder_hidden_states=encoder_hidden_states,
        )
        result = {
            "loss": loss,
            "prediction_scores": prediction_scores,
        }
        self.parent.assertListEqual(
            list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
        )
        self.check_loss_output(result)

    def create_and_check_bert_for_next_sequence_prediction(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForNextSentencePrediction(config=config)
        model.to(torch_device)
        model.eval()
        loss, seq_relationship_score = model(
            input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, next_sentence_label=sequence_labels,
        )
        result = {
            "loss": loss,
            "seq_relationship_score": seq_relationship_score,
        }
        self.parent.assertListEqual(list(result["seq_relationship_score"].size()), [self.batch_size, 2])
        self.check_loss_output(result)

    def create_and_check_bert_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
        loss, prediction_scores, seq_relationship_score = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
325
            labels=token_labels,
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
            next_sentence_label=sequence_labels,
        )
        result = {
            "loss": loss,
            "prediction_scores": prediction_scores,
            "seq_relationship_score": seq_relationship_score,
        }
        self.parent.assertListEqual(
            list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
        )
        self.parent.assertListEqual(list(result["seq_relationship_score"].size()), [self.batch_size, 2])
        self.check_loss_output(result)

    def create_and_check_bert_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
        loss, start_logits, end_logits = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
        result = {
            "loss": loss,
            "start_logits": start_logits,
            "end_logits": end_logits,
        }
        self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
        self.check_loss_output(result)

    def create_and_check_bert_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        loss, logits = model(
            input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
        )
        result = {
            "loss": loss,
            "logits": logits,
        }
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
        self.check_loss_output(result)

    def create_and_check_bert_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
        loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        result = {
            "loss": loss,
            "logits": logits,
        }
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels])
        self.check_loss_output(result)

    def create_and_check_bert_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = BertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        loss, logits = model(
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
        result = {
            "loss": loss,
            "logits": logits,
        }
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
        self.check_loss_output(result)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
419
420
421
422
423
424
425
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
426
427
428
429
430
431
432
433
434
435
436
437
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class BertModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            BertModel,
            BertForMaskedLM,
438
            BertForMultipleChoice,
439
440
441
442
443
444
445
446
447
            BertForNextSentencePrediction,
            BertForPreTraining,
            BertForQuestionAnswering,
            BertForSequenceClassification,
            BertForTokenClassification,
        )
        if is_torch_available()
        else ()
    )
thomwolf's avatar
thomwolf committed
448

thomwolf's avatar
thomwolf committed
449
    def setUp(self):
450
        self.model_tester = BertModelTester(self)
thomwolf's avatar
thomwolf committed
451
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)
thomwolf's avatar
thomwolf committed
452
453

    def test_config(self):
thomwolf's avatar
thomwolf committed
454
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
455

456
    def test_bert_model(self):
thomwolf's avatar
thomwolf committed
457
458
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
459

460
461
462
463
    def test_bert_model_as_decoder(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_bert_model_as_decoder(*config_and_inputs)

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
    def test_bert_model_as_decoder_with_default_input_mask(self):
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

        self.model_tester.create_and_check_bert_model_as_decoder(
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

492
493
494
495
    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_bert_for_causal_lm(*config_and_inputs)

thomwolf's avatar
thomwolf committed
496
497
498
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_masked_lm(*config_and_inputs)
thomwolf's avatar
thomwolf committed
499

500
    def test_for_causal_lm_decoder(self):
501
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
502
        self.model_tester.create_and_check_bert_model_for_causal_lm_as_decoder(*config_and_inputs)
503

thomwolf's avatar
thomwolf committed
504
505
506
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_multiple_choice(*config_and_inputs)
thomwolf's avatar
thomwolf committed
507

thomwolf's avatar
thomwolf committed
508
509
510
    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_next_sequence_prediction(*config_and_inputs)
thomwolf's avatar
thomwolf committed
511

thomwolf's avatar
thomwolf committed
512
513
514
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_pretraining(*config_and_inputs)
thomwolf's avatar
thomwolf committed
515

thomwolf's avatar
thomwolf committed
516
517
518
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_question_answering(*config_and_inputs)
thomwolf's avatar
thomwolf committed
519

thomwolf's avatar
thomwolf committed
520
521
522
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_sequence_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
523

thomwolf's avatar
thomwolf committed
524
525
526
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
527

528
    @slow
thomwolf's avatar
thomwolf committed
529
    def test_model_from_pretrained(self):
530
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
531
            model = BertModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
532
            self.assertIsNotNone(model)