test_modeling_tf_vit.py 9.46 KB
Newer Older
Yih-Dar's avatar
Yih-Dar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow ViT model. """


Matt's avatar
Matt committed
18
19
from __future__ import annotations

Yih-Dar's avatar
Yih-Dar committed
20
21
22
23
import inspect
import unittest

from transformers import ViTConfig
NielsRogge's avatar
NielsRogge committed
24
from transformers.testing_utils import require_tf, require_vision, slow
25
from transformers.utils import cached_property, is_tf_available, is_vision_available
Yih-Dar's avatar
Yih-Dar committed
26

Yih-Dar's avatar
Yih-Dar committed
27
28
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
29
from ...test_pipeline_mixin import PipelineTesterMixin
Yih-Dar's avatar
Yih-Dar committed
30
31
32
33
34
35
36
37
38
39
40


if is_tf_available():
    import tensorflow as tf

    from transformers import TFViTForImageClassification, TFViTModel


if is_vision_available():
    from PIL import Image

41
    from transformers import ViTImageProcessor
Yih-Dar's avatar
Yih-Dar committed
42
43
44
45
46
47
48
49
50
51
52
53
54


class TFViTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
55
        num_hidden_layers=2,
Yih-Dar's avatar
Yih-Dar committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope

NielsRogge's avatar
NielsRogge committed
84
        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
85
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
86
        self.seq_length = num_patches + 1
87

Yih-Dar's avatar
Yih-Dar committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return ViTConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = TFViTModel(config=config)
        result = model(pixel_values, training=False)
NielsRogge's avatar
NielsRogge committed
118
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
Yih-Dar's avatar
Yih-Dar committed
119
120
121
122
123

        # Test with an image with different size than the one specified in config.
        image_size = self.image_size // 2
        pixel_values = pixel_values[:, :, :image_size, :image_size]
        result = model(pixel_values, interpolate_pos_encoding=True, training=False)
NielsRogge's avatar
NielsRogge committed
124
125
        seq_length = (image_size // self.patch_size) ** 2 + 1
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, seq_length, self.hidden_size))
Yih-Dar's avatar
Yih-Dar committed
126
127
128
129
130
131
132
133
134
135
136
137
138

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = TFViTForImageClassification(config)
        result = model(pixel_values, labels=labels, training=False)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

        # Test with an image with different size than the one specified in config.
        image_size = self.image_size // 2
        pixel_values = pixel_values[:, :, :image_size, :image_size]
        result = model(pixel_values, interpolate_pos_encoding=True, training=False)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
139
140
141
142
143
144
145
        # test greyscale images
        config.num_channels = 1
        model = TFViTForImageClassification(config)
        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

Yih-Dar's avatar
Yih-Dar committed
146
147
148
149
150
151
152
153
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_tf
154
class TFViTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Yih-Dar's avatar
Yih-Dar committed
155
156
157
158
159
160
    """
    Here we also overwrite some of the tests of test_modeling_tf_common.py, as ViT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
161
162
163
164
165
    pipeline_model_mapping = (
        {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification}
        if is_tf_available()
        else {}
    )
Yih-Dar's avatar
Yih-Dar committed
166
167
168
169
170
171
172
173
174
175
176
177

    test_resize_embeddings = False
    test_head_masking = False
    test_onnx = False

    def setUp(self):
        self.model_tester = TFViTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
178
    @unittest.skip(reason="ViT does not use inputs_embeds")
Yih-Dar's avatar
Yih-Dar committed
179
180
181
    def test_inputs_embeds(self):
        pass

NielsRogge's avatar
NielsRogge committed
182
    @unittest.skip(reason="ViT does not use inputs_embeds")
Yih-Dar's avatar
Yih-Dar committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    def test_graph_mode_with_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, tf.keras.layers.Layer))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
217
        model = TFViTModel.from_pretrained("google/vit-base-patch16-224")
Yih-Dar's avatar
Yih-Dar committed
218
219
220
221
222
223
224
225
226
        self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


227
@require_tf
Yih-Dar's avatar
Yih-Dar committed
228
229
230
@require_vision
class TFViTModelIntegrationTest(unittest.TestCase):
    @cached_property
231
232
    def default_image_processor(self):
        return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None
Yih-Dar's avatar
Yih-Dar committed
233
234
235

    @slow
    def test_inference_image_classification_head(self):
NielsRogge's avatar
NielsRogge committed
236
        model = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
Yih-Dar's avatar
Yih-Dar committed
237

238
        image_processor = self.default_image_processor
Yih-Dar's avatar
Yih-Dar committed
239
        image = prepare_img()
240
        inputs = image_processor(images=image, return_tensors="tf")
Yih-Dar's avatar
Yih-Dar committed
241
242
243
244
245
246
247
248
249
250
251

        # forward pass
        outputs = model(**inputs)

        # verify the logits
        expected_shape = tf.TensorShape((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = tf.constant([-0.2744, 0.8215, -0.0836])

        tf.debugging.assert_near(outputs.logits[0, :3], expected_slice, atol=1e-4)