"examples/nas/vscode:/vscode.git/clone" did not exist on "a9b87c9ad3cc1516869884530853c339a394dc52"
README.md 94.1 KB
Newer Older
Thomas Wolf's avatar
Thomas Wolf committed
1
# PyTorch Pretrained BERT: The Big & Extending Repository of pretrained Transformers
VictorSanh's avatar
VictorSanh committed
2

Julien Chaumond's avatar
Julien Chaumond committed
3
4
[![CircleCI](https://circleci.com/gh/huggingface/pytorch-pretrained-BERT.svg?style=svg)](https://circleci.com/gh/huggingface/pytorch-pretrained-BERT)

thomwolf's avatar
thomwolf committed
5
This repository contains op-for-op PyTorch reimplementations, pre-trained models and fine-tuning examples for:
VictorSanh's avatar
VictorSanh committed
6

thomwolf's avatar
thomwolf committed
7
- [Google's BERT model](https://github.com/google-research/bert),
thomwolf's avatar
thomwolf committed
8
9
- [OpenAI's GPT model](https://github.com/openai/finetune-transformer-lm),
- [Google/CMU's Transformer-XL model](https://github.com/kimiyoung/transformer-xl), and
Thomas Wolf's avatar
Thomas Wolf committed
10
- [OpenAI's GPT-2 model](https://blog.openai.com/better-language-models/).
thomwolf's avatar
thomwolf committed
11
12
13
14
15
16

These implementations have been tested on several datasets (see the examples) and should match the performances of the associated TensorFlow implementations (e.g. ~91 F1 on SQuAD for BERT, ~88 F1 on RocStories for OpenAI GPT and ~18.3 perplexity on WikiText 103 for the Transformer-XL). You can find more details in the [Examples](#examples) section below.

Here are some information on these models:

**BERT** was released together with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
thomwolf's avatar
thomwolf committed
17
18
This PyTorch implementation of BERT is provided with [Google's pre-trained models](https://github.com/google-research/bert), examples, notebooks and a command-line interface to load any pre-trained TensorFlow checkpoint for BERT is also provided.

thomwolf's avatar
thomwolf committed
19
**OpenAI GPT** was released together with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
thomwolf's avatar
thomwolf committed
20
This PyTorch implementation of OpenAI GPT is an adaptation of the [PyTorch implementation by HuggingFace](https://github.com/huggingface/pytorch-openai-transformer-lm) and is provided with [OpenAI's pre-trained model](https://github.com/openai/finetune-transformer-lm) and a command-line interface that was used to convert the pre-trained NumPy checkpoint in PyTorch.
thomwolf's avatar
thomwolf committed
21
22

**Google/CMU's Transformer-XL** was released together with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](http://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
Davide Fiocco's avatar
Davide Fiocco committed
23
This PyTorch implementation of Transformer-XL is an adaptation of the original [PyTorch implementation](https://github.com/kimiyoung/transformer-xl) which has been slightly modified to match the performances of the TensorFlow implementation and allow to re-use the pretrained weights. A command-line interface is provided to convert TensorFlow checkpoints in PyTorch models.
24

Davide Fiocco's avatar
Davide Fiocco committed
25
**OpenAI GPT-2** was released together with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
Thomas Wolf's avatar
Thomas Wolf committed
26
This PyTorch implementation of OpenAI GPT-2 is an adaptation of the [OpenAI's implementation](https://github.com/openai/gpt-2) and is provided with [OpenAI's pre-trained model](https://github.com/openai/gpt-2) and a command-line interface that was used to convert the TensorFlow checkpoint in PyTorch.
thomwolf's avatar
thomwolf committed
27
28


thomwolf's avatar
thomwolf committed
29
## Content
30

thomwolf's avatar
thomwolf committed
31
| Section | Description |
thomwolf's avatar
thomwolf committed
32
|-|-|
thomwolf's avatar
thomwolf committed
33
34
35
36
37
38
| [Installation](#installation) | How to install the package |
| [Overview](#overview) | Overview of the package |
| [Usage](#usage) | Quickstart examples |
| [Doc](#doc) |  Detailed documentation |
| [Examples](#examples) | Detailed examples on how to fine-tune Bert |
| [Notebooks](#notebooks) | Introduction on the provided Jupyter Notebooks |
thomwolf's avatar
thomwolf committed
39
| [TPU](#tpu) | Notes on TPU support and pretraining scripts |
thomwolf's avatar
thomwolf committed
40
| [Command-line interface](#Command-line-interface) | Convert a TensorFlow checkpoint in a PyTorch dump |
thomwolf's avatar
thomwolf committed
41

thomwolf's avatar
thomwolf committed
42
## Installation
VictorSanh's avatar
VictorSanh committed
43

thomwolf's avatar
thomwolf committed
44
This repo was tested on Python 2.7 and 3.5+ (examples are tested only on python 3.5+) and PyTorch 0.4.1/1.0.0
VictorSanh's avatar
VictorSanh committed
45

thomwolf's avatar
thomwolf committed
46
### With pip
thomwolf's avatar
thomwolf committed
47

thomwolf's avatar
thomwolf committed
48
49
PyTorch pretrained bert can be installed by pip as follows:
```bash
Joel Grus's avatar
Joel Grus committed
50
pip install pytorch-pretrained-bert
thomwolf's avatar
thomwolf committed
51
```
VictorSanh's avatar
VictorSanh committed
52

thomwolf's avatar
thomwolf committed
53
If you want to reproduce the original tokenization process of the `OpenAI GPT` paper, you will need to install `ftfy` (limit to version 4.4.3 if you are using Python 2) and `SpaCy` :
thomwolf's avatar
thomwolf committed
54
55
56
57
58
```bash
pip install spacy ftfy==4.4.3
python -m spacy download en
```

thomwolf's avatar
thomwolf committed
59
60
If you don't install `ftfy` and `SpaCy`, the `OpenAI GPT` tokenizer will default to tokenize using BERT's `BasicTokenizer` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry).

thomwolf's avatar
thomwolf committed
61
### From source
thomwolf's avatar
thomwolf committed
62
63
64
65
66

Clone the repository and run:
```bash
pip install [--editable] .
```
VictorSanh's avatar
VictorSanh committed
67

thomwolf's avatar
thomwolf committed
68
Here also, if you want to reproduce the original tokenization process of the `OpenAI GPT` model, you will need to install `ftfy` (limit to version 4.4.3 if you are using Python 2) and `SpaCy` :
thomwolf's avatar
thomwolf committed
69
70
71
72
73
```bash
pip install spacy ftfy==4.4.3
python -m spacy download en
```

thomwolf's avatar
thomwolf committed
74
Again, if you don't install `ftfy` and `SpaCy`, the `OpenAI GPT` tokenizer will default to tokenize using BERT's `BasicTokenizer` followed by Byte-Pair Encoding (which should be fine for most usage).
thomwolf's avatar
thomwolf committed
75

thomwolf's avatar
thomwolf committed
76
A series of tests is included in the [tests folder](https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/tests) and can be run using `pytest` (install pytest if needed: `pip install pytest`).
VictorSanh's avatar
VictorSanh committed
77

thomwolf's avatar
thomwolf committed
78
79
80
You can run the tests with the command:
```bash
python -m pytest -sv tests/
VictorSanh's avatar
VictorSanh committed
81
82
```

thomwolf's avatar
thomwolf committed
83
## Overview
thomwolf's avatar
thomwolf committed
84

thomwolf's avatar
thomwolf committed
85
This package comprises the following classes that can be imported in Python and are detailed in the [Doc](#doc) section of this readme:
thomwolf's avatar
thomwolf committed
86

thomwolf's avatar
thomwolf committed
87
- Eight **Bert** PyTorch models (`torch.nn.Module`) with pre-trained weights (in the [`modeling.py`](./pytorch_pretrained_bert/modeling.py) file):
88
89
90
91
92
93
94
95
  - [`BertModel`](./pytorch_pretrained_bert/modeling.py#L639) - raw BERT Transformer model (**fully pre-trained**),
  - [`BertForMaskedLM`](./pytorch_pretrained_bert/modeling.py#L793) - BERT Transformer with the pre-trained masked language modeling head on top (**fully pre-trained**),
  - [`BertForNextSentencePrediction`](./pytorch_pretrained_bert/modeling.py#L854) - BERT Transformer with the pre-trained next sentence prediction classifier on top  (**fully pre-trained**),
  - [`BertForPreTraining`](./pytorch_pretrained_bert/modeling.py#L722) - BERT Transformer with masked language modeling head and next sentence prediction classifier on top (**fully pre-trained**),
  - [`BertForSequenceClassification`](./pytorch_pretrained_bert/modeling.py#L916) - BERT Transformer with a sequence classification head on top (BERT Transformer is **pre-trained**, the sequence classification head **is only initialized and has to be trained**),
  - [`BertForMultipleChoice`](./pytorch_pretrained_bert/modeling.py#L982) - BERT Transformer with a multiple choice head on top (used for task like Swag) (BERT Transformer is **pre-trained**, the multiple choice classification head **is only initialized and has to be trained**),
  - [`BertForTokenClassification`](./pytorch_pretrained_bert/modeling.py#L1051) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**),
  - [`BertForQuestionAnswering`](./pytorch_pretrained_bert/modeling.py#L1124) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**).
Thomas Wolf's avatar
Thomas Wolf committed
96

thomwolf's avatar
thomwolf committed
97
- Three **OpenAI GPT** PyTorch models (`torch.nn.Module`) with pre-trained weights (in the [`modeling_openai.py`](./pytorch_pretrained_bert/modeling_openai.py) file):
98
99
100
  - [`OpenAIGPTModel`](./pytorch_pretrained_bert/modeling_openai.py#L536) - raw OpenAI GPT Transformer model (**fully pre-trained**),
  - [`OpenAIGPTLMHeadModel`](./pytorch_pretrained_bert/modeling_openai.py#L643) - OpenAI GPT Transformer with the tied language modeling head on top (**fully pre-trained**),
  - [`OpenAIGPTDoubleHeadsModel`](./pytorch_pretrained_bert/modeling_openai.py#L722) - OpenAI GPT Transformer with the tied language modeling head and a multiple choice classification head on top (OpenAI GPT Transformer is **pre-trained**, the multiple choice classification head **is only initialized and has to be trained**),
thomwolf's avatar
thomwolf committed
101

thomwolf's avatar
thomwolf committed
102
- Two **Transformer-XL** PyTorch models (`torch.nn.Module`) with pre-trained weights (in the [`modeling_transfo_xl.py`](./pytorch_pretrained_bert/modeling_transfo_xl.py) file):
103
104
  - [`TransfoXLModel`](./pytorch_pretrained_bert/modeling_transfo_xl.py#L983) - Transformer-XL model which outputs the last hidden state and memory cells (**fully pre-trained**),
  - [`TransfoXLLMHeadModel`](./pytorch_pretrained_bert/modeling_transfo_xl.py#L1260) - Transformer-XL with the tied adaptive softmax head on top for language modeling which outputs the logits/loss and memory cells (**fully pre-trained**),
thomwolf's avatar
thomwolf committed
105

thomwolf's avatar
thomwolf committed
106
- Three **OpenAI GPT-2** PyTorch models (`torch.nn.Module`) with pre-trained weights (in the [`modeling_gpt2.py`](./pytorch_pretrained_bert/modeling_gpt2.py) file):
107
108
109
  - [`GPT2Model`](./pytorch_pretrained_bert/modeling_gpt2.py#L479) - raw OpenAI GPT-2 Transformer model (**fully pre-trained**),
  - [`GPT2LMHeadModel`](./pytorch_pretrained_bert/modeling_gpt2.py#L559) - OpenAI GPT-2 Transformer with the tied language modeling head on top (**fully pre-trained**),
  - [`GPT2DoubleHeadsModel`](./pytorch_pretrained_bert/modeling_gpt2.py#L624) - OpenAI GPT-2 Transformer with the tied language modeling head and a multiple choice classification head on top (OpenAI GPT-2 Transformer is **pre-trained**, the multiple choice classification head **is only initialized and has to be trained**),
thomwolf's avatar
thomwolf committed
110

thomwolf's avatar
thomwolf committed
111
- Tokenizers for **BERT** (using word-piece) (in the [`tokenization.py`](./pytorch_pretrained_bert/tokenization.py) file):
thomwolf's avatar
thomwolf committed
112
113
114
115
  - `BasicTokenizer` - basic tokenization (punctuation splitting, lower casing, etc.),
  - `WordpieceTokenizer` - WordPiece tokenization,
  - `BertTokenizer` - perform end-to-end tokenization, i.e. basic tokenization followed by WordPiece tokenization.

thomwolf's avatar
thomwolf committed
116
- Tokenizer for **OpenAI GPT** (using Byte-Pair-Encoding) (in the [`tokenization_openai.py`](./pytorch_pretrained_bert/tokenization_openai.py) file):
thomwolf's avatar
thomwolf committed
117
118
119
120
  - `OpenAIGPTTokenizer` - perform Byte-Pair-Encoding (BPE) tokenization.

- Tokenizer for **Transformer-XL** (word tokens ordered by frequency for adaptive softmax) (in the [`tokenization_transfo_xl.py`](./pytorch_pretrained_bert/tokenization_transfo_xl.py) file):
  - `OpenAIGPTTokenizer` - perform word tokenization and can order words by frequency in a corpus for use in an adaptive softmax.
thomwolf's avatar
thomwolf committed
121

thomwolf's avatar
thomwolf committed
122
123
124
- Tokenizer for **OpenAI GPT-2** (using byte-level Byte-Pair-Encoding) (in the [`tokenization_gpt2.py`](./pytorch_pretrained_bert/tokenization_gpt2.py) file):
  - `GPT2Tokenizer` - perform byte-level Byte-Pair-Encoding (BPE) tokenization.

thomwolf's avatar
thomwolf committed
125
- Optimizer for **BERT** (in the [`optimization.py`](./pytorch_pretrained_bert/optimization.py) file):
thomwolf's avatar
thomwolf committed
126
  - `BertAdam` - Bert version of Adam algorithm with weight decay fix, warmup and linear decay of the learning rate.
thomwolf's avatar
thomwolf committed
127

thomwolf's avatar
thomwolf committed
128
- Optimizer for **OpenAI GPT** (in the [`optimization_openai.py`](./pytorch_pretrained_bert/optimization_openai.py) file):
129
  - `OpenAIAdam` - OpenAI GPT version of Adam algorithm with weight decay fix, warmup and linear decay of the learning rate.
thomwolf's avatar
thomwolf committed
130

thomwolf's avatar
thomwolf committed
131
- Configuration classes for BERT, OpenAI GPT and Transformer-XL (in the respective [`modeling.py`](./pytorch_pretrained_bert/modeling.py), [`modeling_openai.py`](./pytorch_pretrained_bert/modeling_openai.py), [`modeling_transfo_xl.py`](./pytorch_pretrained_bert/modeling_transfo_xl.py) files):
Julien Chaumond's avatar
Julien Chaumond committed
132
  - `BertConfig` - Configuration class to store the configuration of a `BertModel` with utilities to read and write from JSON configuration files.
thomwolf's avatar
thomwolf committed
133
  - `OpenAIGPTConfig` - Configuration class to store the configuration of a `OpenAIGPTModel` with utilities to read and write from JSON configuration files.
134
  - `GPT2Config` - Configuration class to store the configuration of a `GPT2Model` with utilities to read and write from JSON configuration files.
thomwolf's avatar
thomwolf committed
135
  - `TransfoXLConfig` - Configuration class to store the configuration of a `TransfoXLModel` with utilities to read and write from JSON configuration files.
thomwolf's avatar
thomwolf committed
136

thomwolf's avatar
thomwolf committed
137
138
The repository further comprises:

thomwolf's avatar
thomwolf committed
139
- Five examples on how to use **BERT** (in the [`examples` folder](./examples)):
thomwolf's avatar
thomwolf committed
140
141
  - [`extract_features.py`](./examples/extract_features.py) - Show how to extract hidden states from an instance of `BertModel`,
  - [`run_classifier.py`](./examples/run_classifier.py) - Show how to fine-tune an instance of `BertForSequenceClassification` on GLUE's MRPC task,
thomwolf's avatar
thomwolf committed
142
  - [`run_squad.py`](./examples/run_squad.py) - Show how to fine-tune an instance of `BertForQuestionAnswering` on SQuAD v1.0 and SQuAD v2.0 tasks.
143
  - [`run_swag.py`](./examples/run_swag.py) - Show how to fine-tune an instance of `BertForMultipleChoice` on Swag task.
Sepehr Sameni's avatar
Sepehr Sameni committed
144
  - [`simple_lm_finetuning.py`](./examples/lm_finetuning/simple_lm_finetuning.py) - Show how to fine-tune an instance of `BertForPretraining` on a target text corpus.
thomwolf's avatar
thomwolf committed
145
146

- One example on how to use **OpenAI GPT** (in the [`examples` folder](./examples)):
Thomas Wolf's avatar
Thomas Wolf committed
147
  - [`run_openai_gpt.py`](./examples/run_openai_gpt.py) - Show how to fine-tune an instance of `OpenGPTDoubleHeadsModel` on the RocStories task.
thomwolf's avatar
thomwolf committed
148

Thomas Wolf's avatar
Thomas Wolf committed
149
150
- One example on how to use **Transformer-XL** (in the [`examples` folder](./examples)):
  - [`run_transfo_xl.py`](./examples/run_transfo_xl.py) - Show how to load and evaluate a pre-trained model of `TransfoXLLMHeadModel` on WikiText 103.
thomwolf's avatar
thomwolf committed
151

thomwolf's avatar
thomwolf committed
152
153
154
- One example on how to use **OpenAI GPT-2** in the unconditional and interactive mode (in the [`examples` folder](./examples)):
  - [`run_gpt2.py`](./examples/run_gpt2.py) - Show how to use OpenAI GPT-2 an instance of `GPT2LMHeadModel` to generate text (same as the original OpenAI GPT-2 examples).

thomwolf's avatar
thomwolf committed
155
  These examples are detailed in the [Examples](#examples) section of this readme.
thomwolf's avatar
thomwolf committed
156
157
158
159
160
161

- Three notebooks that were used to check that the TensorFlow and PyTorch models behave identically (in the [`notebooks` folder](./notebooks)):
  - [`Comparing-TF-and-PT-models.ipynb`](./notebooks/Comparing-TF-and-PT-models.ipynb) - Compare the hidden states predicted by `BertModel`,
  - [`Comparing-TF-and-PT-models-SQuAD.ipynb`](./notebooks/Comparing-TF-and-PT-models-SQuAD.ipynb) - Compare the spans predicted by  `BertForQuestionAnswering` instances,
  - [`Comparing-TF-and-PT-models-MLM-NSP.ipynb`](./notebooks/Comparing-TF-and-PT-models-MLM-NSP.ipynb) - Compare the predictions of the `BertForPretraining` instances.

thomwolf's avatar
thomwolf committed
162
  These notebooks are detailed in the [Notebooks](#notebooks) section of this readme.
thomwolf's avatar
thomwolf committed
163

thomwolf's avatar
thomwolf committed
164
- A command-line interface to convert TensorFlow checkpoints (BERT, Transformer-XL) or NumPy checkpoint (OpenAI) in a PyTorch save of the associated PyTorch model:
thomwolf's avatar
thomwolf committed
165

thomwolf's avatar
thomwolf committed
166
  This CLI is detailed in the [Command-line interface](#Command-line-interface) section of this readme.
thomwolf's avatar
thomwolf committed
167
168

## Usage
thomwolf's avatar
thomwolf committed
169

thomwolf's avatar
thomwolf committed
170
171
### BERT

thomwolf's avatar
thomwolf committed
172
Here is a quick-start example using `BertTokenizer`, `BertModel` and `BertForMaskedLM` class with Google AI's pre-trained `Bert base uncased` model. See the [doc section](#doc) below for all the details on these classes.
thomwolf's avatar
thomwolf committed
173

thomwolf's avatar
thomwolf committed
174
First let's prepare a tokenized input with `BertTokenizer`
thomwolf's avatar
thomwolf committed
175
176
177

```python
import torch
thomwolf's avatar
thomwolf committed
178
from pytorch_pretrained_bert import BertTokenizer, BertModel, BertForMaskedLM
thomwolf's avatar
thomwolf committed
179

thomwolf's avatar
thomwolf committed
180
181
182
183
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)

thomwolf's avatar
thomwolf committed
184
# Load pre-trained model tokenizer (vocabulary)
thomwolf's avatar
thomwolf committed
185
186
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

thomwolf's avatar
thomwolf committed
187
# Tokenized input
thomwolf's avatar
thomwolf committed
188
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
thomwolf's avatar
thomwolf committed
189
tokenized_text = tokenizer.tokenize(text)
thomwolf's avatar
thomwolf committed
190
191

# Mask a token that we will try to predict back with `BertForMaskedLM`
Liang Niu's avatar
Liang Niu committed
192
masked_index = 8
thomwolf's avatar
thomwolf committed
193
tokenized_text[masked_index] = '[MASK]'
thomwolf's avatar
thomwolf committed
194
assert tokenized_text == ['[CLS]', 'who', 'was', 'jim', 'henson', '?', '[SEP]', 'jim', '[MASK]', 'was', 'a', 'puppet', '##eer', '[SEP]']
thomwolf's avatar
thomwolf committed
195
196
197

# Convert token to vocabulary indices
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
thomwolf's avatar
thomwolf committed
198
# Define sentence A and B indices associated to 1st and 2nd sentences (see paper)
thomwolf's avatar
thomwolf committed
199
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
thomwolf's avatar
thomwolf committed
200

thomwolf's avatar
thomwolf committed
201
# Convert inputs to PyTorch tensors
thomwolf's avatar
thomwolf committed
202
203
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
thomwolf's avatar
thomwolf committed
204
205
206
207
208
209
210
```

Let's see how to use `BertModel` to get hidden states

```python
# Load pre-trained model (weights)
model = BertModel.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
211
model.eval()
thomwolf's avatar
thomwolf committed
212

thomwolf's avatar
thomwolf committed
213
214
215
216
217
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')

thomwolf's avatar
thomwolf committed
218
# Predict hidden states features for each layer
thomwolf's avatar
thomwolf committed
219
220
with torch.no_grad():
    encoded_layers, _ = model(tokens_tensor, segments_tensors)
thomwolf's avatar
thomwolf committed
221
222
223
224
225
226
227
228
229
230
231
# We have a hidden states for each of the 12 layers in model bert-base-uncased
assert len(encoded_layers) == 12
```

And how to use `BertForMaskedLM`

```python
# Load pre-trained model (weights)
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
model.eval()

thomwolf's avatar
thomwolf committed
232
233
234
235
236
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')

thomwolf's avatar
thomwolf committed
237
# Predict all tokens
thomwolf's avatar
thomwolf committed
238
239
with torch.no_grad():
    predictions = model(tokens_tensor, segments_tensors)
thomwolf's avatar
thomwolf committed
240

thomwolf's avatar
thomwolf committed
241
# confirm we were able to predict 'henson'
thomwolf's avatar
thomwolf committed
242
predicted_index = torch.argmax(predictions[0, masked_index]).item()
243
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
thomwolf's avatar
thomwolf committed
244
245
246
assert predicted_token == 'henson'
```

thomwolf's avatar
thomwolf committed
247
248
249
250
251
252
253
254
255
256
### OpenAI GPT

Here is a quick-start example using `OpenAIGPTTokenizer`, `OpenAIGPTModel` and `OpenAIGPTLMHeadModel` class with OpenAI's pre-trained  model. See the [doc section](#doc) below for all the details on these classes.

First let's prepare a tokenized input with `OpenAIGPTTokenizer`

```python
import torch
from pytorch_pretrained_bert import OpenAIGPTTokenizer, OpenAIGPTModel, OpenAIGPTLMHeadModel

thomwolf's avatar
thomwolf committed
257
258
259
260
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)

thomwolf's avatar
thomwolf committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Load pre-trained model tokenizer (vocabulary)
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')

# Tokenized input
text = "Who was Jim Henson ? Jim Henson was a puppeteer"
tokenized_text = tokenizer.tokenize(text)

# Convert token to vocabulary indices
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)

# Convert inputs to PyTorch tensors
tokens_tensor = torch.tensor([indexed_tokens])
```

Let's see how to use `OpenAIGPTModel` to get hidden states
thomwolf's avatar
thomwolf committed
276
277
278
279
280
281

```python
# Load pre-trained model (weights)
model = OpenAIGPTModel.from_pretrained('openai-gpt')
model.eval()

thomwolf's avatar
thomwolf committed
282
283
284
285
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
model.to('cuda')

thomwolf's avatar
thomwolf committed
286
# Predict hidden states features for each layer
thomwolf's avatar
thomwolf committed
287
288
with torch.no_grad():
    hidden_states = model(tokens_tensor)
thomwolf's avatar
thomwolf committed
289
290
291
292
293
294
295
296
297
```

And how to use `OpenAIGPTLMHeadModel`

```python
# Load pre-trained model (weights)
model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
model.eval()

thomwolf's avatar
thomwolf committed
298
299
300
301
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
model.to('cuda')

thomwolf's avatar
thomwolf committed
302
# Predict all tokens
thomwolf's avatar
thomwolf committed
303
304
with torch.no_grad():
    predictions = model(tokens_tensor)
thomwolf's avatar
thomwolf committed
305
306

# get the predicted last token
thomwolf's avatar
thomwolf committed
307
predicted_index = torch.argmax(predictions[0, -1, :]).item()
thomwolf's avatar
thomwolf committed
308
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
thomwolf's avatar
thomwolf committed
309
assert predicted_token == '.</w>'
thomwolf's avatar
thomwolf committed
310
311
```

thomwolf's avatar
thomwolf committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
And how to use `OpenAIGPTDoubleHeadsModel`

```python
# Load pre-trained model (weights)
model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt')
model.eval()

#  Prepare tokenized input
text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
tokenized_text1 = tokenizer.tokenize(text1)
tokenized_text2 = tokenizer.tokenize(text2)
indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])

# Predict hidden states features for each layer
with torch.no_grad():
    lm_logits, multiple_choice_logits = model(tokens_tensor, mc_token_ids)
```

thomwolf's avatar
thomwolf committed
334
335
### Transformer-XL

thomwolf's avatar
thomwolf committed
336
Here is a quick-start example using `TransfoXLTokenizer`, `TransfoXLModel` and `TransfoXLModelLMHeadModel` class with the Transformer-XL model pre-trained on WikiText-103. See the [doc section](#doc) below for all the details on these classes.
thomwolf's avatar
thomwolf committed
337

thomwolf's avatar
thomwolf committed
338
First let's prepare a tokenized input with `TransfoXLTokenizer`
thomwolf's avatar
thomwolf committed
339
340
341

```python
import torch
thomwolf's avatar
thomwolf committed
342
from pytorch_pretrained_bert import TransfoXLTokenizer, TransfoXLModel, TransfoXLLMHeadModel
thomwolf's avatar
thomwolf committed
343

thomwolf's avatar
thomwolf committed
344
345
346
347
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)

thomwolf's avatar
thomwolf committed
348
349
# Load pre-trained model tokenizer (vocabulary from wikitext 103)
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
thomwolf's avatar
thomwolf committed
350
351

# Tokenized input
thomwolf's avatar
thomwolf committed
352
353
354
355
text_1 = "Who was Jim Henson ?"
text_2 = "Jim Henson was a puppeteer"
tokenized_text_1 = tokenizer.tokenize(text_1)
tokenized_text_2 = tokenizer.tokenize(text_2)
thomwolf's avatar
thomwolf committed
356
357

# Convert token to vocabulary indices
thomwolf's avatar
thomwolf committed
358
359
indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
thomwolf's avatar
thomwolf committed
360
361

# Convert inputs to PyTorch tensors
thomwolf's avatar
thomwolf committed
362
363
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
thomwolf's avatar
thomwolf committed
364
365
```

thomwolf's avatar
thomwolf committed
366
Let's see how to use `TransfoXLModel` to get hidden states
thomwolf's avatar
thomwolf committed
367
368
369

```python
# Load pre-trained model (weights)
thomwolf's avatar
thomwolf committed
370
model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
thomwolf's avatar
thomwolf committed
371
372
model.eval()

thomwolf's avatar
thomwolf committed
373
374
375
376
377
378
379
380
381
382
# If you have a GPU, put everything on cuda
tokens_tensor_1 = tokens_tensor_1.to('cuda')
tokens_tensor_2 = tokens_tensor_2.to('cuda')
model.to('cuda')

with torch.no_grad():
    # Predict hidden states features for each layer
    hidden_states_1, mems_1 = model(tokens_tensor_1)
    # We can re-use the memory cells in a subsequent call to attend a longer context
    hidden_states_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
thomwolf's avatar
thomwolf committed
383
384
```

thomwolf's avatar
thomwolf committed
385
And how to use `TransfoXLLMHeadModel`
thomwolf's avatar
thomwolf committed
386
387
388

```python
# Load pre-trained model (weights)
thomwolf's avatar
thomwolf committed
389
model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
thomwolf's avatar
thomwolf committed
390
391
model.eval()

thomwolf's avatar
thomwolf committed
392
393
394
395
396
397
398
399
400
401
# If you have a GPU, put everything on cuda
tokens_tensor_1 = tokens_tensor_1.to('cuda')
tokens_tensor_2 = tokens_tensor_2.to('cuda')
model.to('cuda')

with torch.no_grad():
    # Predict all tokens
    predictions_1, mems_1 = model(tokens_tensor_1)
    # We can re-use the memory cells in a subsequent call to attend a longer context
    predictions_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
thomwolf's avatar
thomwolf committed
402
403

# get the predicted last token
thomwolf's avatar
thomwolf committed
404
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
thomwolf's avatar
thomwolf committed
405
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
thomwolf's avatar
thomwolf committed
406
assert predicted_token == 'who'
thomwolf's avatar
thomwolf committed
407
408
```

thomwolf's avatar
thomwolf committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
### OpenAI GPT-2

Here is a quick-start example using `GPT2Tokenizer`, `GPT2Model` and `GPT2LMHeadModel` class with OpenAI's pre-trained  model. See the [doc section](#doc) below for all the details on these classes.

First let's prepare a tokenized input with `GPT2Tokenizer`

```python
import torch
from pytorch_pretrained_bert import GPT2Tokenizer, GPT2Model, GPT2LMHeadModel

# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)

# Load pre-trained model tokenizer (vocabulary)
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

426
427
428
429
430
# Encode some inputs
text_1 = "Who was Jim Henson ?"
text_2 = "Jim Henson was a puppeteer"
indexed_tokens_1 = tokenizer.encode(text_1)
indexed_tokens_2 = tokenizer.encode(text_2)
thomwolf's avatar
thomwolf committed
431
432

# Convert inputs to PyTorch tensors
433
434
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
thomwolf's avatar
thomwolf committed
435
436
437
438
439
440
441
442
443
444
```

Let's see how to use `GPT2Model` to get hidden states

```python
# Load pre-trained model (weights)
model = GPT2Model.from_pretrained('gpt2')
model.eval()

# If you have a GPU, put everything on cuda
445
446
tokens_tensor_1 = tokens_tensor_1.to('cuda')
tokens_tensor_2 = tokens_tensor_2.to('cuda')
thomwolf's avatar
thomwolf committed
447
448
449
450
model.to('cuda')

# Predict hidden states features for each layer
with torch.no_grad():
451
452
    hidden_states_1, past = model(tokens_tensor_1)
    # past can be used to reuse precomputed hidden state in a subsequent predictions
453
    # (see beam-search examples in the run_gpt2.py example).
454
    hidden_states_2, past = model(tokens_tensor_2, past=past)
thomwolf's avatar
thomwolf committed
455
456
457
458
459
460
461
462
463
464
```

And how to use `GPT2LMHeadModel`

```python
# Load pre-trained model (weights)
model = GPT2LMHeadModel.from_pretrained('gpt2')
model.eval()

# If you have a GPU, put everything on cuda
465
466
tokens_tensor_1 = tokens_tensor_1.to('cuda')
tokens_tensor_2 = tokens_tensor_2.to('cuda')
thomwolf's avatar
thomwolf committed
467
468
469
470
model.to('cuda')

# Predict all tokens
with torch.no_grad():
471
472
    predictions_1, past = model(tokens_tensor_1)
    # past can be used to reuse precomputed hidden state in a subsequent predictions
473
    # (see beam-search examples in the run_gpt2.py example).
474
    predictions_2, past = model(tokens_tensor_2, past=past)
thomwolf's avatar
thomwolf committed
475
476

# get the predicted last token
477
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
thomwolf's avatar
thomwolf committed
478
479
480
predicted_token = tokenizer.decode([predicted_index])
```

thomwolf's avatar
thomwolf committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
And how to use `GPT2DoubleHeadsModel`

```python
# Load pre-trained model (weights)
model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
model.eval()

#  Prepare tokenized input
text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
tokenized_text1 = tokenizer.tokenize(text1)
tokenized_text2 = tokenizer.tokenize(text2)
indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])

# Predict hidden states features for each layer
with torch.no_grad():
    lm_logits, multiple_choice_logits, past = model(tokens_tensor, mc_token_ids)
```


thomwolf's avatar
thomwolf committed
504
## Doc
thomwolf's avatar
thomwolf committed
505

thomwolf's avatar
thomwolf committed
506
507
508
509
Here is a detailed documentation of the classes in the package and how to use them:

| Sub-section | Description |
|-|-|
thomwolf's avatar
thomwolf committed
510
511
512
513
| [Loading pre-trained weights](#loading-google-ai-or-openai-pre-trained-weights-or-pytorch-dump) | How to load Google AI/OpenAI's pre-trained weight or a PyTorch saved instance |
| [Serialization best-practices](#serialization-best-practices) | How to save and reload a fine-tuned model |
| [Configurations](#configurations) | API of the configuration classes for BERT, GPT, GPT-2 and Transformer-XL |
| [Models](#models) | API of the PyTorch model classes for BERT, GPT, GPT-2 and Transformer-XL |
Thomas Wolf's avatar
Thomas Wolf committed
514
| [Tokenizers](#tokenizers) | API of the tokenizers class for BERT, GPT, GPT-2 and Transformer-XL|
thomwolf's avatar
thomwolf committed
515
| [Optimizers](#optimizers) |  API of the optimizers |
thomwolf's avatar
thomwolf committed
516

Desiree Vogt-Lee's avatar
Desiree Vogt-Lee committed
517
### Loading Google AI or OpenAI pre-trained weights or PyTorch dump
thomwolf's avatar
thomwolf committed
518

519
520
521
### `from_pretrained()` method

To load one of Google AI's, OpenAI's pre-trained models or a PyTorch saved model (an instance of `BertForPreTraining` saved with `torch.save()`), the PyTorch model classes and the tokenizer can be instantiated using the `from_pretrained()` method:
thomwolf's avatar
thomwolf committed
522
523

```python
524
model = BERT_CLASS.from_pretrained(PRE_TRAINED_MODEL_NAME_OR_PATH, cache_dir=None, from_tf=False, state_dict=None, *input, **kwargs)
thomwolf's avatar
thomwolf committed
525
526
527
528
```

where

thomwolf's avatar
thomwolf committed
529
- `BERT_CLASS` is either a tokenizer to load the vocabulary (`BertTokenizer` or `OpenAIGPTTokenizer` classes) or one of the eight BERT or three OpenAI GPT PyTorch model classes (to load the pre-trained weights): `BertModel`, `BertForMaskedLM`, `BertForNextSentencePrediction`, `BertForPreTraining`, `BertForSequenceClassification`, `BertForTokenClassification`, `BertForMultipleChoice`, `BertForQuestionAnswering`, `OpenAIGPTModel`, `OpenAIGPTLMHeadModel` or `OpenAIGPTDoubleHeadsModel`, and
Thomas Wolf's avatar
Thomas Wolf committed
530
- `PRE_TRAINED_MODEL_NAME_OR_PATH` is either:
thomwolf's avatar
thomwolf committed
531

thomwolf's avatar
thomwolf committed
532
  - the shortcut name of a Google AI's or OpenAI's pre-trained model selected in the list:
thomwolf's avatar
thomwolf committed
533

thomwolf's avatar
thomwolf committed
534
535
536
    - `bert-base-uncased`: 12-layer, 768-hidden, 12-heads, 110M parameters
    - `bert-large-uncased`: 24-layer, 1024-hidden, 16-heads, 340M parameters
    - `bert-base-cased`: 12-layer, 768-hidden, 12-heads , 110M parameters
thomwolf's avatar
thomwolf committed
537
538
    - `bert-large-cased`: 24-layer, 1024-hidden, 16-heads, 340M parameters
    - `bert-base-multilingual-uncased`: (Orig, not recommended) 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
thomwolf's avatar
thomwolf committed
539
    - `bert-base-multilingual-cased`: **(New, recommended)** 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
thomwolf's avatar
thomwolf committed
540
    - `bert-base-chinese`: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters
541
    - `bert-base-german-cased`: Trained on German data only, 12-layer, 768-hidden, 12-heads, 110M parameters [Performance Evaluation](https://deepset.ai/german-bert)
542
543
    - `bert-large-uncased-whole-word-masking`: 24-layer, 1024-hidden, 16-heads, 340M parameters - Trained with Whole Word Masking (mask all of the the tokens corresponding to a word at once)
    - `bert-large-cased-whole-word-masking`: 24-layer, 1024-hidden, 16-heads, 340M parameters - Trained with Whole Word Masking (mask all of the the tokens corresponding to a word at once)
544
    - `bert-large-uncased-whole-word-masking-finetuned-squad`: The `bert-large-uncased-whole-word-masking` model finetuned on SQuAD (using the `run_squad.py` examples). Results: *exact_match: 86.91579943235573, f1: 93.1532499015869*
545
    - `openai-gpt`: OpenAI GPT English model, 12-layer, 768-hidden, 12-heads, 110M parameters
thomwolf's avatar
thomwolf committed
546
    - `gpt2`: OpenAI GPT-2 English model, 12-layer, 768-hidden, 12-heads, 117M parameters
547
548
    - `gpt2-medium`: OpenAI GPT-2 English model, 24-layer, 1024-hidden, 16-heads, 345M parameters
    - `transfo-xl-wt103`: Transformer-XL English model trained on wikitext-103, 18-layer, 1024-hidden, 16-heads, 257M parameters
thomwolf's avatar
thomwolf committed
549

thomwolf's avatar
thomwolf committed
550
  - a path or url to a pretrained model archive containing:
thomwolf's avatar
thomwolf committed
551

thomwolf's avatar
thomwolf committed
552
    - `bert_config.json` or `openai_gpt_config.json` a configuration file for the model, and
thomwolf's avatar
thomwolf committed
553
    - `pytorch_model.bin` a PyTorch dump of a pre-trained instance of `BertForPreTraining`, `OpenAIGPTModel`, `TransfoXLModel`, `GPT2LMHeadModel` (saved with the usual `torch.save()`)
thomwolf's avatar
thomwolf committed
554

555
  If `PRE_TRAINED_MODEL_NAME_OR_PATH` is a shortcut name, the pre-trained weights will be downloaded from AWS S3 (see the links [here](pytorch_pretrained_bert/modeling.py)) and stored in a cache folder to avoid future download (the cache folder can be found at `~/.pytorch_pretrained_bert/`).
556

Thomas Wolf's avatar
Thomas Wolf committed
557
- `cache_dir` can be an optional path to a specific directory to download and cache the pre-trained model weights. This option is useful in particular when you are using distributed training: to avoid concurrent access to the same weights you can set for example `cache_dir='./pretrained_model_{}'.format(args.local_rank)` (see the section on distributed training for more information).
558
559
560
561
- `from_tf`: should we load the weights from a locally saved TensorFlow checkpoint
- `state_dict`: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
- `*inputs`, `**kwargs`: additional input for the specific Bert class (ex: num_labels for BertForSequenceClassification)

thomwolf's avatar
thomwolf committed
562

563
564
`Uncased` means that the text has been lowercased before WordPiece tokenization, e.g., `John Smith` becomes `john smith`. The Uncased model also strips out any accent markers. `Cased` means that the true case and accent markers are preserved. Typically, the Uncased model is better unless you know that case information is important for your task (e.g., Named Entity Recognition or Part-of-Speech tagging). For information about the Multilingual and Chinese model, see the [Multilingual README](https://github.com/google-research/bert/blob/master/multilingual.md) or the original TensorFlow repository.

Thomas Wolf's avatar
Thomas Wolf committed
565
**When using an `uncased model`, make sure to pass `--do_lower_case` to the example training scripts (or pass `do_lower_case=True` to FullTokenizer if you're using your own script and loading the tokenizer your-self.).**
566

thomwolf's avatar
thomwolf committed
567
Examples:
thomwolf's avatar
thomwolf committed
568
```python
thomwolf's avatar
thomwolf committed
569
# BERT
570
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True, do_basic_tokenize=True)
thomwolf's avatar
thomwolf committed
571
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
572
573
574
575

# OpenAI GPT
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTModel.from_pretrained('openai-gpt')
thomwolf's avatar
thomwolf committed
576
577
578
579

# Transformer-XL
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
thomwolf's avatar
thomwolf committed
580
581
582
583
584

# OpenAI GPT-2
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2Model.from_pretrained('gpt2')

thomwolf's avatar
thomwolf committed
585
586
```

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
#### Cache directory

`pytorch_pretrained_bert` save the pretrained weights in a cache directory which is located at (in this order of priority):

- `cache_dir` optional arguments to the `from_pretrained()` method (see above),
- shell environment variable `PYTORCH_PRETRAINED_BERT_CACHE`,
- PyTorch cache home + `/pytorch_pretrained_bert/`
  where PyTorch cache home is defined by (in this order):
  - shell environment variable `ENV_TORCH_HOME`
  - shell environment variable `ENV_XDG_CACHE_HOME` + `/torch/`)
  - default: `~/.cache/torch/`

Usually, if you don't set any specific environment variable, `pytorch_pretrained_bert` cache will be at `~/.cache/torch/pytorch_pretrained_bert/`.

You can alsways safely delete `pytorch_pretrained_bert` cache but the pretrained model weights and vocabulary files wil have to be re-downloaded from our S3.

thomwolf's avatar
thomwolf committed
603
### Serialization best-practices
604

thomwolf's avatar
thomwolf committed
605
This section explain how you can save and re-load a fine-tuned model (BERT, GPT, GPT-2 and Transformer-XL).
606
607
608
609
610
611
There are three types of files you need to save to be able to reload a fine-tuned model:

- the model it-self which should be saved following PyTorch serialization [best practices](https://pytorch.org/docs/stable/notes/serialization.html#best-practices),
- the configuration file of the model which is saved as a JSON file, and
- the vocabulary (and the merges for the BPE-based models GPT and GPT-2).

612
The *default filenames* of these files are as follow:
613
614
615
616
617
618

- the model weights file: `pytorch_model.bin`,
- the configuration file: `config.json`,
- the vocabulary file: `vocab.txt` for BERT and Transformer-XL, `vocab.json` for GPT/GPT-2 (BPE vocabulary),
- for GPT/GPT-2 (BPE vocabulary) the additional merges file: `merges.txt`.

619
620
**If you save a model using these *default filenames*, you can then re-load the model and tokenizer using the `from_pretrained()` method.**

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
Here is the recommended way of saving the model, configuration and vocabulary to an `output_dir` directory and reloading the model and tokenizer afterwards:

```python
from pytorch_pretrained_bert import WEIGHTS_NAME, CONFIG_NAME

output_dir = "./models/"

# Step 1: Save a model, configuration and vocabulary that you have fine-tuned

# If we have a distributed model, save only the encapsulated model
# (it was wrapped in PyTorch DistributedDataParallel or DataParallel)
model_to_save = model.module if hasattr(model, 'module') else model

# If we save using the predefined names, we can load using `from_pretrained`
output_model_file = os.path.join(output_dir, WEIGHTS_NAME)
output_config_file = os.path.join(output_dir, CONFIG_NAME)

torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(output_dir)

# Step 2: Re-load the saved model and vocabulary

# Example for a Bert model
model = BertForQuestionAnswering.from_pretrained(output_dir)
tokenizer = BertTokenizer.from_pretrained(output_dir, do_lower_case=args.do_lower_case)  # Add specific options if needed
# Example for a GPT model
model = OpenAIGPTDoubleHeadsModel.from_pretrained(output_dir)
tokenizer = OpenAIGPTTokenizer.from_pretrained(output_dir)
```

Here is another way you can save and reload the model if you want to use specific paths for each type of files:

```python
output_model_file = "./models/my_own_model_file.bin"
output_config_file = "./models/my_own_config_file.bin"
output_vocab_file = "./models/my_own_vocab_file.bin"

# Step 1: Save a model, configuration and vocabulary that you have fine-tuned

# If we have a distributed model, save only the encapsulated model
# (it was wrapped in PyTorch DistributedDataParallel or DataParallel)
model_to_save = model.module if hasattr(model, 'module') else model

torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(output_vocab_file)

# Step 2: Re-load the saved model and vocabulary

# We didn't save using the predefined WEIGHTS_NAME, CONFIG_NAME names, we cannot load using `from_pretrained`.
# Here is how to do it in this situation:

# Example for a Bert model
config = BertConfig.from_json_file(output_config_file)
model = BertForQuestionAnswering(config)
state_dict = torch.load(output_model_file)
model.load_state_dict(state_dict)
tokenizer = BertTokenizer(output_vocab_file, do_lower_case=args.do_lower_case)

# Example for a GPT model
config = OpenAIGPTConfig.from_json_file(output_config_file)
model = OpenAIGPTDoubleHeadsModel(config)
state_dict = torch.load(output_model_file)
model.load_state_dict(state_dict)
tokenizer = OpenAIGPTTokenizer(output_vocab_file)
```

thomwolf's avatar
thomwolf committed
689
### Configurations
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

Models (BERT, GPT, GPT-2 and Transformer-XL) are defined and build from configuration classes which containes the parameters of the models (number of layers, dimensionalities...) and a few utilities to read and write from JSON configuration files. The respective configuration classes are:

- `BertConfig` for `BertModel` and BERT classes instances.
- `OpenAIGPTConfig` for `OpenAIGPTModel` and OpenAI GPT classes instances.
- `GPT2Config` for `GPT2Model` and OpenAI GPT-2 classes instances.
- `TransfoXLConfig` for `TransfoXLModel` and Transformer-XL classes instances.

These configuration classes contains a few utilities to load and save configurations:

- `from_dict(cls, json_object)`: A class method to construct a configuration from a Python dictionary of parameters. Returns an instance of the configuration class.
- `from_json_file(cls, json_file)`: A class method to construct a configuration from a json file of parameters. Returns an instance of the configuration class.
- `to_dict()`: Serializes an instance to a Python dictionary. Returns a dictionary.
- `to_json_string()`: Serializes an instance to a JSON string. Returns a string.
- `to_json_file(json_file_path)`: Save an instance to a json file.

thomwolf's avatar
thomwolf committed
706
### Models
thomwolf's avatar
thomwolf committed
707

thomwolf's avatar
thomwolf committed
708
#### 1. `BertModel`
thomwolf's avatar
thomwolf committed
709

thomwolf's avatar
thomwolf committed
710
711
`BertModel` is the basic BERT Transformer model with a layer of summed token, position and sequence embeddings followed by a series of identical self-attention blocks (12 for BERT-base, 24 for BERT-large).

712
713
714
715
716
717
718
Instantiation:
The model can be instantiated with the following arguments:

- `config`: a `BertConfig` class instance with the configuration to build a new model.
- `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
- `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. This can be used to compute head importance metrics. Default: False

thomwolf's avatar
thomwolf committed
719
720
The inputs and output are **identical to the TensorFlow model inputs and outputs**.

thomwolf's avatar
thomwolf committed
721
We detail them here. This model takes as *inputs*:
722
[`modeling.py`](./pytorch_pretrained_bert/modeling.py)
723
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary (see the tokens preprocessing logic in the scripts [`extract_features.py`](./examples/extract_features.py), [`run_classifier.py`](./examples/run_classifier.py) and [`run_squad.py`](./examples/run_squad.py)), and
Clement's avatar
typos  
Clement committed
724
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
Thomas Wolf's avatar
Thomas Wolf committed
725
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if some input sequence lengths are smaller than the max input sequence length of the current batch. It's the mask that we typically use for attention when a batch has varying length sentences.
thomwolf's avatar
thomwolf committed
726
- `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
thomwolf's avatar
thomwolf committed
727
- `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. It's a mask to be used to nullify some heads of the transformer. 0.0 => head is fully masked, 1.0 => head is not masked.
thomwolf's avatar
thomwolf committed
728

thomwolf's avatar
thomwolf committed
729
This model *outputs* a tuple composed of:
thomwolf's avatar
thomwolf committed
730

thomwolf's avatar
thomwolf committed
731
732
- `encoded_layers`: controled by the value of the `output_encoded_layers` argument:

Thomas Wolf's avatar
Thomas Wolf committed
733
734
  - `output_all_encoded_layers=True`: outputs a list of the encoded-hidden-states at the end of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
  - `output_all_encoded_layers=False`: outputs only the encoded-hidden-states corresponding to the last attention block, i.e. a single torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
thomwolf's avatar
thomwolf committed
735

thomwolf's avatar
thomwolf committed
736
- `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (`CLF`) to train on the Next-Sentence task (see BERT's paper).
thomwolf's avatar
thomwolf committed
737

738
An example on how to use this class is given in the [`extract_features.py`](./examples/extract_features.py) script which can be used to extract the hidden states of the model for a given input.
thomwolf's avatar
thomwolf committed
739

thomwolf's avatar
thomwolf committed
740
#### 2. `BertForPreTraining`
thomwolf's avatar
thomwolf committed
741
742
743
744
745
746

`BertForPreTraining` includes the `BertModel` Transformer followed by the two pre-training heads:

- the masked language modeling head, and
- the next sentence classification head.

thomwolf's avatar
thomwolf committed
747
*Inputs* comprises the inputs of the [`BertModel`](#-1.-`BertModel`) class plus two optional labels:
thomwolf's avatar
thomwolf committed
748
749
750
751
752
753
754
755

- `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size]
- `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size] with indices selected in [0, 1]. 0 => next sentence is the continuation, 1 => next sentence is a random sentence.

*Outputs*:

- if `masked_lm_labels` and `next_sentence_label` are not `None`: Outputs the total_loss which is the sum of the masked language modeling loss and the next sentence classification loss.
- if `masked_lm_labels` or `next_sentence_label` is `None`: Outputs a tuple comprising
Thomas Wolf's avatar
Thomas Wolf committed
756

thomwolf's avatar
thomwolf committed
757
758
  - the masked language modeling logits, and
  - the next sentence classification logits.
Joel Grus's avatar
Joel Grus committed
759

tholor's avatar
tholor committed
760
761
An example on how to use this class is given in the [`run_lm_finetuning.py`](./examples/run_lm_finetuning.py) script which can be used to fine-tune the BERT language model on your specific different text corpus. This should improve model performance, if the language style is different from the original BERT training corpus (Wiki + BookCorpus).

thomwolf's avatar
thomwolf committed
762

thomwolf's avatar
thomwolf committed
763
#### 3. `BertForMaskedLM`
thomwolf's avatar
thomwolf committed
764
765
766

`BertForMaskedLM` includes the `BertModel` Transformer followed by the (possibly) pre-trained  masked language modeling head.

thomwolf's avatar
thomwolf committed
767
*Inputs* comprises the inputs of the [`BertModel`](#-1.-`BertModel`) class plus optional label:
thomwolf's avatar
thomwolf committed
768
769
770
771
772
773
774
775

- `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size]

*Outputs*:

- if `masked_lm_labels` is not `None`: Outputs the masked language modeling loss.
- if `masked_lm_labels` is `None`: Outputs the masked language modeling logits.

thomwolf's avatar
thomwolf committed
776
#### 4. `BertForNextSentencePrediction`
thomwolf's avatar
thomwolf committed
777
778
779

`BertForNextSentencePrediction` includes the `BertModel` Transformer followed by the next sentence classification head.

thomwolf's avatar
thomwolf committed
780
*Inputs* comprises the inputs of the [`BertModel`](#-1.-`BertModel`) class plus an optional label:
thomwolf's avatar
thomwolf committed
781
782
783
784
785
786
787
788

- `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size] with indices selected in [0, 1]. 0 => next sentence is the continuation, 1 => next sentence is a random sentence.

*Outputs*:

- if `next_sentence_label` is not `None`: Outputs the next sentence classification loss.
- if `next_sentence_label` is `None`: Outputs the next sentence classification logits.

thomwolf's avatar
thomwolf committed
789
#### 5. `BertForSequenceClassification`
thomwolf's avatar
thomwolf committed
790

Thomas Wolf's avatar
typos  
Thomas Wolf committed
791
`BertForSequenceClassification` is a fine-tuning model that includes `BertModel` and a sequence-level (sequence or pair of sequences) classifier on top of the `BertModel`.
thomwolf's avatar
thomwolf committed
792

Thomas Wolf's avatar
Thomas Wolf committed
793
The sequence-level classifier is a linear layer that takes as input the last hidden state of the first character in the input sequence (see Figures 3a and 3b in the BERT paper).
thomwolf's avatar
thomwolf committed
794

795
An example on how to use this class is given in the [`run_classifier.py`](./examples/run_classifier.py) script which can be used to fine-tune a single sequence (or pair of sequence) classifier using BERT, for example for the MRPC task.
thomwolf's avatar
thomwolf committed
796

797
798
799
800
#### 6. `BertForMultipleChoice`

`BertForMultipleChoice` is a fine-tuning model that includes `BertModel` and a linear layer on top of the `BertModel`.

Gr茅gory Ch芒tel's avatar
Gr茅gory Ch芒tel committed
801
The linear layer outputs a single value for each choice of a multiple choice problem, then all the outputs corresponding to an instance are passed through a softmax to get the model choice.
802
803
804
805
806
807

This implementation is largely inspired by the work of OpenAI in [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) and the answer of Jacob Devlin in the following [issue](https://github.com/google-research/bert/issues/38).

An example on how to use this class is given in the [`run_swag.py`](./examples/run_swag.py) script which can be used to fine-tune a multiple choice classifier using BERT, for example for the Swag task.

#### 7. `BertForTokenClassification`
808
809
810
811
812

`BertForTokenClassification` is a fine-tuning model that includes `BertModel` and a token-level classifier on top of the `BertModel`.

The token-level classifier is a linear layer that takes as input the last hidden state of the sequence.

813
#### 8. `BertForQuestionAnswering`
thomwolf's avatar
thomwolf committed
814

Knut Ole Sj酶li's avatar
Knut Ole Sj酶li committed
815
`BertForQuestionAnswering` is a fine-tuning model that includes `BertModel` with a token-level classifiers on top of the full sequence of last hidden states.
thomwolf's avatar
thomwolf committed
816

Thomas Wolf's avatar
Thomas Wolf committed
817
The token-level classifier takes as input the full sequence of the last hidden state and compute several (e.g. two) scores for each tokens that can for example respectively be the score that a given token is a `start_span` and a `end_span` token (see Figures 3c and 3d in the BERT paper).
thomwolf's avatar
thomwolf committed
818

819
An example on how to use this class is given in the [`run_squad.py`](./examples/run_squad.py) script which can be used to fine-tune a token classifier using BERT, for example for the SQuAD task.
thomwolf's avatar
thomwolf committed
820

thomwolf's avatar
thomwolf committed
821
822
823
824
#### 9. `OpenAIGPTModel`

`OpenAIGPTModel` is the basic OpenAI GPT Transformer model with a layer of summed token and position embeddings followed by a series of 12 identical self-attention blocks.

825
826
827
828
829
830
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: `[SEP]`, `[CLS]`...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

The embeddings are ordered as follow in the token embeddings matrice:
thomwolf's avatar
thomwolf committed
831

832
```python
thomwolf's avatar
thomwolf committed
833
834
835
836
837
    [0,                                                         ----------------------
      ...                                                        -> word embeddings
      config.vocab_size - 1,                                     ______________________
      config.vocab_size,
      ...                                                        -> special embeddings
838
839
      config.vocab_size + config.n_special - 1]                  ______________________
```
thomwolf's avatar
thomwolf committed
840

841
842
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
    `total_tokens_embeddings = config.vocab_size + config.n_special`
thomwolf's avatar
thomwolf committed
843
844
You should use the associate indices to index the embeddings.

845
846
847
848
849
850
851
Instantiation:
The model can be instantiated with the following arguments:

- `config`: a `OpenAIConfig` class instance with the configuration to build a new model.
- `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
- `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. This can be used to compute head importance metrics. Default: False

thomwolf's avatar
thomwolf committed
852
853
854
855
The inputs and output are **identical to the TensorFlow model inputs and outputs**.

We detail them here. This model takes as *inputs*:
[`modeling_openai.py`](./pytorch_pretrained_bert/modeling_openai.py)
856
857
858
859
860
861
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length] were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
- `position_ids`: an optional torch.LongTensor with the same shape as input_ids
    with the position indices (selected in the range [0, config.n_positions - 1[.
- `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
    You can use it to add a third type of embedding to each input token in the sequence
    (the previous two being the word and position embeddings). The input, position and token_type embeddings are summed inside the Transformer before the first self-attention block.
thomwolf's avatar
thomwolf committed
862
- `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. It's a mask to be used to nullify some heads of the transformer. 0.0 => head is fully masked, 1.0 => head is not masked.
thomwolf's avatar
thomwolf committed
863
864

This model *outputs*:
865
- `hidden_states`: a list of all the encoded-hidden-states in the model (length of the list: number of layers + 1 for the output of the embeddings) as torch.FloatTensor of size [batch_size, sequence_length, hidden_size] (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
thomwolf's avatar
thomwolf committed
866
867
868
869
870
871
872
873
874
875
876
877

#### 10. `OpenAIGPTLMHeadModel`

`OpenAIGPTLMHeadModel` includes the `OpenAIGPTModel` Transformer followed by a language modeling head with weights tied to the input embeddings (no additional parameters).

*Inputs* are the same as the inputs of the [`OpenAIGPTModel`](#-9.-`OpenAIGPTModel`) class plus optional labels:
- `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size].

*Outputs*:
- if `lm_labels` is not `None`:
  Outputs the language modeling loss.
- else:
878
  Outputs `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings] (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
thomwolf's avatar
thomwolf committed
879
880
881
882
883

#### 11. `OpenAIGPTDoubleHeadsModel`

`OpenAIGPTDoubleHeadsModel` includes the `OpenAIGPTModel` Transformer followed by two heads:
- a language modeling head with weights tied to the input embeddings (no additional parameters) and:
884
- a multiple choice classifier (linear layer that take as input a hidden state in a sequence to compute a score, see details in paper).
thomwolf's avatar
thomwolf committed
885
886

*Inputs* are the same as the inputs of the [`OpenAIGPTModel`](#-9.-`OpenAIGPTModel`) class plus a classification mask and two optional labels:
887
- `multiple_choice_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token whose hidden state should be used as input for the multiple choice classifier (usually the [CLS] token for each choice).
thomwolf's avatar
thomwolf committed
888
889
890
891
892
893
894
- `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size].
- `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size] with indices selected in [0, ..., num_choices].

*Outputs*:
- if `lm_labels` and `multiple_choice_labels` are not `None`:
  Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
- else Outputs a tuple with:
895
  - `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
thomwolf's avatar
thomwolf committed
896
897
  - `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

thomwolf's avatar
thomwolf committed
898
899
900
901
902
903
904
905
906
907
908
#### 12. `TransfoXLModel`

The Transformer-XL model is described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context".

Transformer XL use a relative positioning with sinusiodal patterns and adaptive softmax inputs which means that:

- you don't need to specify positioning embeddings indices
- the tokens in the vocabulary have to be sorted to decreasing frequency.

This model takes as *inputs*:
[`modeling_transfo_xl.py`](./pytorch_pretrained_bert/modeling_transfo_xl.py)
909
910
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the token indices selected in the range [0, self.config.n_token[
- `mems`: an optional memory of hidden states from previous forward passes as a list (num layers) of hidden states at the entry of each layer. Each hidden states has shape [self.config.mem_len, bsz, self.config.d_model]. Note that the first two dimensions are transposed in `mems` with regards to `input_ids`.
thomwolf's avatar
thomwolf committed
911
912

This model *outputs* a tuple of (last_hidden_state, new_mems)
913
914
- `last_hidden_state`: the encoded-hidden-states at the top of the model as a torch.FloatTensor of size [batch_size, sequence_length, self.config.d_model]
- `new_mems`: list (num layers) of updated mem states at the entry of each layer each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]. Note that the first two dimensions are transposed in `mems` with regards to `input_ids`.
thomwolf's avatar
thomwolf committed
915

Thomas Wolf's avatar
Thomas Wolf committed
916
917
918
919
920
921
922
923
924
925
926
927
##### Extracting a list of the hidden states at each layer of the Transformer-XL from `last_hidden_state` and `new_mems`:
The `new_mems` contain all the hidden states PLUS the output of the embeddings (`new_mems[0]`). `new_mems[-1]` is the output of the hidden state of the layer below the last layer and `last_hidden_state` is the output of the last layer (i.E. the input of the softmax when we have a language modeling head on top).

There are two differences between the shapes of `new_mems` and `last_hidden_state`: `new_mems` have transposed first dimensions and are longer (of size `self.config.mem_len`). Here is how to extract the full list of hidden states from the model output:

```python
hidden_states, mems = model(tokens_tensor)
seq_length = hidden_states.size(1)
lower_hidden_states = list(t[-seq_length:, ...].transpose(0, 1) for t in mems)
all_hidden_states = lower_hidden_states + [hidden_states]
```

thomwolf's avatar
thomwolf committed
928
929
930
931
932
#### 13. `TransfoXLLMHeadModel`

`TransfoXLLMHeadModel` includes the `TransfoXLModel` Transformer followed by an (adaptive) softmax head with weights tied to the input embeddings.

*Inputs* are the same as the inputs of the [`TransfoXLModel`](#-12.-`TransfoXLModel`) class plus optional labels:
933
- `target`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the target token indices selected in the range [0, self.config.n_token[
thomwolf's avatar
thomwolf committed
934
935
936

*Outputs* a tuple of (last_hidden_state, new_mems)
- `softmax_output`: output of the (adaptive) softmax:
thomwolf's avatar
thomwolf committed
937
938
  - if target is None: log probabilities of tokens, shape [batch_size, sequence_length, n_tokens] 
  - else: Negative log likelihood of target tokens with shape [batch_size, sequence_length]
939
- `new_mems`: list (num layers) of updated mem states at the entry of each layer each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]. Note that the first two dimensions are transposed in `mems` with regards to `input_ids`.
thomwolf's avatar
thomwolf committed
940

thomwolf's avatar
thomwolf committed
941
942
943
944
#### 14. `GPT2Model`

`GPT2Model` is the OpenAI GPT-2 Transformer model with a layer of summed token and position embeddings followed by a series of 12 identical self-attention blocks.

945
946
947
948
949
950
951
Instantiation:
The model can be instantiated with the following arguments:

- `config`: a `GPT2Config` class instance with the configuration to build a new model.
- `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
- `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. This can be used to compute head importance metrics. Default: False

thomwolf's avatar
thomwolf committed
952
953
954
955
956
957
958
959
960
961
962
The inputs and output are **identical to the TensorFlow model inputs and outputs**.

We detail them here. This model takes as *inputs*:
[`modeling_gpt2.py`](./pytorch_pretrained_bert/modeling_gpt2.py)
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length] were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, vocab_size[
- `position_ids`: an optional torch.LongTensor with the same shape as input_ids
    with the position indices (selected in the range [0, config.n_positions - 1[.
- `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
    You can use it to add a third type of embedding to each input token in the sequence
    (the previous two being the word and position embeddings). The input, position and token_type embeddings are summed inside the Transformer before the first self-attention block.
- `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states (key and values in the attention blocks) to speed up sequential decoding (this is the `presents` output of the model, cf. below).
thomwolf's avatar
thomwolf committed
963
- `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. It's a mask to be used to nullify some heads of the transformer. 0.0 => head is fully masked, 1.0 => head is not masked.
thomwolf's avatar
thomwolf committed
964
965

This model *outputs*:
966
- `hidden_states`: a list of all the encoded-hidden-states in the model (length of the list: number of layers + 1 for the output of the embeddings) as torch.FloatTensor of size [batch_size, sequence_length, hidden_size] (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
thomwolf's avatar
thomwolf committed
967
968
969
970
971
972
973
974
975
976
977
978
- `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as a torch.FloatTensors. They can be reused to speed up sequential decoding (see the `run_gpt2.py` example).

#### 15. `GPT2LMHeadModel`

`GPT2LMHeadModel` includes the `GPT2Model` Transformer followed by a language modeling head with weights tied to the input embeddings (no additional parameters).

*Inputs* are the same as the inputs of the [`GPT2Model`](#-14.-`GPT2Model`) class plus optional labels:
- `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size].

*Outputs*:
- if `lm_labels` is not `None`:
  Outputs the language modeling loss.
Joel Grus's avatar
Joel Grus committed
979
- else: a tuple of
thomwolf's avatar
thomwolf committed
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
  - `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings] (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
  - `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as a torch.FloatTensors. They can be reused to speed up sequential decoding (see the `run_gpt2.py` example).

#### 16. `GPT2DoubleHeadsModel`

`GPT2DoubleHeadsModel` includes the `GPT2Model` Transformer followed by two heads:
- a language modeling head with weights tied to the input embeddings (no additional parameters) and:
- a multiple choice classifier (linear layer that take as input a hidden state in a sequence to compute a score, see details in paper).

*Inputs* are the same as the inputs of the [`GPT2Model`](#-14.-`GPT2Model`) class plus a classification mask and two optional labels:
- `multiple_choice_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token whose hidden state should be used as input for the multiple choice classifier (usually the [CLS] token for each choice).
- `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size].
- `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size] with indices selected in [0, ..., num_choices].

*Outputs*:
- if `lm_labels` and `multiple_choice_labels` are not `None`:
  Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
- else Outputs a tuple with:
  - `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
  - `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
  - `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as a torch.FloatTensors. They can be reused to speed up sequential decoding (see the `run_gpt2.py` example).

thomwolf's avatar
thomwolf committed
1002
### Tokenizers
thomwolf's avatar
thomwolf committed
1003
1004

#### `BertTokenizer`
thomwolf's avatar
thomwolf committed
1005

thomwolf's avatar
thomwolf committed
1006
`BertTokenizer` perform end-to-end tokenization, i.e. basic tokenization followed by WordPiece tokenization.
thomwolf's avatar
thomwolf committed
1007

1008
This class has five arguments:
thomwolf's avatar
thomwolf committed
1009

thomwolf's avatar
thomwolf committed
1010
1011
- `vocab_file`: path to a vocabulary file.
- `do_lower_case`: convert text to lower-case while tokenizing. **Default = True**.
thomwolf's avatar
thomwolf committed
1012
- `max_len`: max length to filter the input of the Transformer. Default to pre-trained value for the model if `None`. **Default = None**
1013
- `do_basic_tokenize`: Do basic tokenization before wordpice tokenization. Set to false if text is pre-tokenized. **Default = True**.
thomwolf's avatar
thomwolf committed
1014
- `never_split`: a list of tokens that should not be splitted during tokenization. **Default = `["[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"]`**
thomwolf's avatar
thomwolf committed
1015

thomwolf's avatar
thomwolf committed
1016
and three methods:
Thomas Wolf's avatar
typos  
Thomas Wolf committed
1017

thomwolf's avatar
thomwolf committed
1018
1019
1020
- `tokenize(text)`: convert a `str` in a list of `str` tokens by (1) performing basic tokenization and (2) WordPiece tokenization.
- `convert_tokens_to_ids(tokens)`: convert a list of `str` tokens in a list of `int` indices in the vocabulary.
- `convert_ids_to_tokens(tokens)`: convert a list of `int` indices in a list of `str` tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
1021
- `save_vocabulary(directory_path)`: save the vocabulary file to `directory_path`. Return the path to the saved vocabulary file: `vocab_file_path`. The vocabulary can be reloaded with `BertTokenizer.from_pretrained('vocab_file_path')` or `BertTokenizer.from_pretrained('directory_path')`.
thomwolf's avatar
thomwolf committed
1022

thomwolf's avatar
thomwolf committed
1023
Please refer to the doc strings and code in [`tokenization.py`](./pytorch_pretrained_bert/tokenization.py) for the details of the `BasicTokenizer` and `WordpieceTokenizer` classes. In general it is recommended to use `BertTokenizer` unless you know what you are doing.
thomwolf's avatar
thomwolf committed
1024

thomwolf's avatar
thomwolf committed
1025
1026
1027
1028
#### `OpenAIGPTTokenizer`

`OpenAIGPTTokenizer` perform Byte-Pair-Encoding (BPE) tokenization.

thomwolf's avatar
thomwolf committed
1029
This class has four arguments:
thomwolf's avatar
thomwolf committed
1030
1031
1032

- `vocab_file`: path to a vocabulary file.
- `merges_file`: path to a file containing the BPE merges.
thomwolf's avatar
thomwolf committed
1033
1034
- `max_len`: max length to filter the input of the Transformer. Default to pre-trained value for the model if `None`. **Default = None**
- `special_tokens`: a list of tokens to add to the vocabulary for fine-tuning. If SpaCy is not installed and BERT's `BasicTokenizer` is used as the pre-BPE tokenizer, these tokens are not split. **Default= None**
thomwolf's avatar
thomwolf committed
1035

thomwolf's avatar
thomwolf committed
1036
and five methods:
thomwolf's avatar
thomwolf committed
1037

1038
- `tokenize(text)`: convert a `str` in a list of `str` tokens by performing BPE tokenization.
thomwolf's avatar
thomwolf committed
1039
1040
- `convert_tokens_to_ids(tokens)`: convert a list of `str` tokens in a list of `int` indices in the vocabulary.
- `convert_ids_to_tokens(tokens)`: convert a list of `int` indices in a list of `str` tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
1041
- `set_special_tokens(self, special_tokens)`: update the list of special tokens (see above arguments)
1042
- `encode(text)`: convert a `str` in a list of `int` tokens by performing BPE encoding.
thomwolf's avatar
thomwolf committed
1043
- `decode(ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)`: decode a list of `int` indices in a string and do some post-processing if needed: (i) remove special tokens from the output and (ii) clean up tokenization spaces.
thomwolf's avatar
thomwolf committed
1044
- `save_vocabulary(directory_path)`: save the vocabulary, merge and special tokens files to `directory_path`. Return the path to the three files: `vocab_file_path`, `merge_file_path`, `special_tokens_file_path`. The vocabulary can be reloaded with `OpenAIGPTTokenizer.from_pretrained('directory_path')`.
thomwolf's avatar
thomwolf committed
1045
1046
1047

Please refer to the doc strings and code in [`tokenization_openai.py`](./pytorch_pretrained_bert/tokenization_openai.py) for the details of the `OpenAIGPTTokenizer`.

thomwolf's avatar
thomwolf committed
1048
1049
#### `TransfoXLTokenizer`

1050
`TransfoXLTokenizer` perform word tokenization. This tokenizer can be used for adaptive softmax and has utilities for counting tokens in a corpus to create a vocabulary ordered by toekn frequency (for adaptive softmax). See the adaptive softmax paper ([Efficient softmax approximation for GPUs](http://arxiv.org/abs/1609.04309)) for more details.
thomwolf's avatar
thomwolf committed
1051

thomwolf's avatar
thomwolf committed
1052
1053
The API is similar to the API of `BertTokenizer` (see above).

1054
Please refer to the doc strings and code in [`tokenization_transfo_xl.py`](./pytorch_pretrained_bert/tokenization_transfo_xl.py) for the details of these additional methods in `TransfoXLTokenizer`.
thomwolf's avatar
thomwolf committed
1055

thomwolf's avatar
thomwolf committed
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
#### `GPT2Tokenizer`

`GPT2Tokenizer` perform byte-level Byte-Pair-Encoding (BPE) tokenization.

This class has three arguments:

- `vocab_file`: path to a vocabulary file.
- `merges_file`: path to a file containing the BPE merges.
- `errors`: How to handle unicode decoding errors. **Default = `replace`**

and two methods:

1068
1069
1070
1071
- `tokenize(text)`: convert a `str` in a list of `str` tokens by performing byte-level BPE.
- `convert_tokens_to_ids(tokens)`: convert a list of `str` tokens in a list of `int` indices in the vocabulary.
- `convert_ids_to_tokens(tokens)`: convert a list of `int` indices in a list of `str` tokens in the vocabulary.
- `set_special_tokens(self, special_tokens)`: update the list of special tokens (see above arguments)
thomwolf's avatar
thomwolf committed
1072
1073
- `encode(text)`: convert a `str` in a list of `int` tokens by performing byte-level BPE.
- `decode(tokens)`: convert back a list of `int` tokens in a `str`.
thomwolf's avatar
thomwolf committed
1074
- `save_vocabulary(directory_path)`: save the vocabulary, merge and special tokens files to `directory_path`. Return the path to the three files: `vocab_file_path`, `merge_file_path`, `special_tokens_file_path`. The vocabulary can be reloaded with `OpenAIGPTTokenizer.from_pretrained('directory_path')`.
thomwolf's avatar
thomwolf committed
1075
1076
1077

Please refer to [`tokenization_gpt2.py`](./pytorch_pretrained_bert/tokenization_gpt2.py) for more details on the `GPT2Tokenizer`.

thomwolf's avatar
thomwolf committed
1078
### Optimizers
thomwolf's avatar
thomwolf committed
1079
1080

#### `BertAdam`
thomwolf's avatar
thomwolf committed
1081

thomwolf's avatar
thomwolf committed
1082
`BertAdam` is a `torch.optimizer` adapted to be closer to the optimizer used in the TensorFlow implementation of Bert. The differences with PyTorch Adam optimizer are the following:
thomwolf's avatar
thomwolf committed
1083

thomwolf's avatar
thomwolf committed
1084
1085
- BertAdam implements weight decay fix,
- BertAdam doesn't compensate for bias as in the regular Adam optimizer.
thomwolf's avatar
thomwolf committed
1086
1087
1088
1089

The optimizer accepts the following arguments:

- `lr` : learning rate
Thomas Wolf's avatar
Thomas Wolf committed
1090
- `warmup` : portion of `t_total` for the warmup, `-1`  means no warmup. Default : `-1`
thomwolf's avatar
thomwolf committed
1091
- `t_total` : total number of training steps for the learning
Thomas Wolf's avatar
Thomas Wolf committed
1092
    rate schedule, `-1`  means constant learning rate. Default : `-1`
lukovnikov's avatar
lukovnikov committed
1093
1094
1095
1096
- `schedule` : schedule to use for the warmup (see above).
    Can be `'warmup_linear'`, `'warmup_constant'`, `'warmup_cosine'`, `'none'`, `None` or a `_LRSchedule` object (see below).
    If `None` or `'none'`, learning rate is always kept constant.
    Default : `'warmup_linear'`
Thomas Wolf's avatar
Thomas Wolf committed
1097
1098
1099
- `b1` : Adams b1. Default : `0.9`
- `b2` : Adams b2. Default : `0.999`
- `e` : Adams epsilon. Default : `1e-6`
1100
- `weight_decay:` Weight decay. Default : `0.01`
Thomas Wolf's avatar
Thomas Wolf committed
1101
- `max_grad_norm` : Maximum norm for the gradients (`-1` means no clipping). Default : `1.0`
thomwolf's avatar
thomwolf committed
1102

1103
#### `OpenAIAdam`
thomwolf's avatar
thomwolf committed
1104

1105
1106
`OpenAIAdam` is similar to `BertAdam`.
The differences with `BertAdam` is that `OpenAIAdam` compensate for bias as in the regular Adam optimizer.
thomwolf's avatar
thomwolf committed
1107

1108
`OpenAIAdam` accepts the same arguments as `BertAdam`.
thomwolf's avatar
thomwolf committed
1109

lukovnikov's avatar
lukovnikov committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
#### Learning Rate Schedules
The `.optimization` module also provides additional schedules in the form of schedule objects that inherit from `_LRSchedule`.
All `_LRSchedule` subclasses accept `warmup` and `t_total` arguments at construction.
When an `_LRSchedule` object is passed into `BertAdam` or `OpenAIAdam`, 
the `warmup` and `t_total` arguments on the optimizer are ignored and the ones in the `_LRSchedule` object are used. 
An overview of the implemented schedules:
- `ConstantLR`: always returns learning rate 1.
- `WarmupConstantSchedule`: Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
    Keeps learning rate equal to 1. after warmup.
    ![](docs/imgs/warmup_constant_schedule.png)
- `WarmupLinearSchedule`: Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
    Linearly decreases learning rate from 1. to 0. over remaining `1 - warmup` steps.
    ![](docs/imgs/warmup_linear_schedule.png)
-  `WarmupCosineSchedule`: Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
    Decreases learning rate from 1. to 0. over remaining `1 - warmup` steps following a cosine curve.
    If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup.
    ![](docs/imgs/warmup_cosine_schedule.png)
- `WarmupCosineWithHardRestartsSchedule`: Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
    If `cycles` (default=1.) is different from default, learning rate follows `cycles` times a cosine decaying learning rate (with hard restarts).
    ![](docs/imgs/warmup_cosine_hard_restarts_schedule.png)
- `WarmupCosineWithWarmupRestartsSchedule`: All training progress is divided in `cycles` (default=1.) parts of equal length.
    Every part follows a schedule with the first `warmup` fraction of the training steps linearly increasing from 0. to 1.,
    followed by a learning rate decreasing from 1. to 0. following a cosine curve.
    Note that the total number of all warmup steps over all cycles together is equal to `warmup` * `cycles`
    ![](docs/imgs/warmup_cosine_warm_restarts_schedule.png)

thomwolf's avatar
thomwolf committed
1136
## Examples
thomwolf's avatar
thomwolf committed
1137

thomwolf's avatar
thomwolf committed
1138
1139
1140
| Sub-section | Description |
|-|-|
| [Training large models: introduction, tools and examples](#Training-large-models-introduction,-tools-and-examples) | How to use gradient-accumulation, multi-gpu training, distributed training, optimize on CPU and 16-bits training to train Bert models |
tholor's avatar
tholor committed
1141
| [Fine-tuning with BERT: running the examples](#Fine-tuning-with-BERT-running-the-examples) | Running the examples in [`./examples`](./examples/): `extract_classif.py`, `run_classifier.py`, `run_squad.py` and `run_lm_finetuning.py` |
Colanim's avatar
Colanim committed
1142
| [Fine-tuning with OpenAI GPT, Transformer-XL and GPT-2](#openai-gpt-transformer-xl-and-gpt-2-running-the-examples) | Running the examples in [`./examples`](./examples/): `run_openai_gpt.py`, `run_transfo_xl.py` and `run_gpt2.py` |
thomwolf's avatar
thomwolf committed
1143
1144
| [Fine-tuning BERT-large on GPUs](#Fine-tuning-BERT-large-on-GPUs) | How to fine tune `BERT large`|

thomwolf's avatar
thomwolf committed
1145
### Training large models: introduction, tools and examples
thomwolf's avatar
thomwolf committed
1146

Thomas Wolf's avatar
Thomas Wolf committed
1147
BERT-base and BERT-large are respectively 110M and 340M parameters models and it can be difficult to fine-tune them on a single GPU with the recommended batch size for good performance (in most case a batch size of 32).
thomwolf's avatar
thomwolf committed
1148

1149
To help with fine-tuning these models, we have included several techniques that you can activate in the fine-tuning scripts [`run_classifier.py`](./examples/run_classifier.py) and [`run_squad.py`](./examples/run_squad.py): gradient-accumulation, multi-gpu training, distributed training and 16-bits training . For more details on how to use these techniques you can read [the tips on training large batches in PyTorch](https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255) that I published earlier this month.
thomwolf's avatar
thomwolf committed
1150

thomwolf's avatar
thomwolf committed
1151
Here is how to use these techniques in our scripts:
thomwolf's avatar
thomwolf committed
1152

thomwolf's avatar
thomwolf committed
1153
1154
- **Gradient Accumulation**: Gradient accumulation can be used by supplying a integer greater than 1 to the `--gradient_accumulation_steps` argument. The batch at each step will be divided by this integer and gradient will be accumulated over `gradient_accumulation_steps` steps.
- **Multi-GPU**: Multi-GPU is automatically activated when several GPUs are detected and the batches are splitted over the GPUs.
thomwolf's avatar
thomwolf committed
1155
- **Distributed training**: Distributed training can be activated by supplying an integer greater or equal to 0 to the `--local_rank` argument (see below).
Julien Chaumond's avatar
Julien Chaumond committed
1156
- **16-bits training**: 16-bits training, also called mixed-precision training, can reduce the memory requirement of your model on the GPU by using half-precision training, basically allowing to double the batch size. If you have a recent GPU (starting from NVIDIA Volta architecture) you should see no decrease in speed. A good introduction to Mixed precision training can be found [here](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) and a full documentation is [here](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html). In our scripts, this option can be activated by setting the `--fp16` flag and you can play with loss scaling using the `--loss_scale` flag (see the previously linked documentation for details on loss scaling). The loss scale can be zero in which case the scale is dynamically adjusted or a positive power of two in which case the scaling is static.
1157

Julien Chaumond's avatar
Julien Chaumond committed
1158
To use 16-bits training and distributed training, you need to install NVIDIA's apex extension [as detailed here](https://github.com/nvidia/apex). You will find more information regarding the internals of `apex` and how to use `apex` in [the doc and the associated repository](https://github.com/nvidia/apex). The results of the tests performed on pytorch-BERT by the NVIDIA team (and my trials at reproducing them) can be consulted in [the relevant PR of the present repository](https://github.com/huggingface/pytorch-pretrained-BERT/pull/116).
thomwolf's avatar
thomwolf committed
1159

thomwolf's avatar
thomwolf committed
1160
Note: To use *Distributed Training*, you will need to run one training script on each of your machines. This can be done for example by running the following command on each server (see [the above mentioned blog post]((https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255)) for more details):
thomwolf's avatar
thomwolf committed
1161
1162
1163
```bash
python -m torch.distributed.launch --nproc_per_node=4 --nnodes=2 --node_rank=$THIS_MACHINE_INDEX --master_addr="192.168.1.1" --master_port=1234 run_classifier.py (--arg1 --arg2 --arg3 and all other arguments of the run_classifier script)
```
1164
Where `$THIS_MACHINE_INDEX` is an sequential index assigned to each of your machine (0, 1, 2...) and the machine with rank 0 has an IP address `192.168.1.1` and an open port `1234`.
thomwolf's avatar
thomwolf committed
1165

thomwolf's avatar
thomwolf committed
1166
### Fine-tuning with BERT: running the examples
VictorSanh's avatar
VictorSanh committed
1167

1168
We showcase several fine-tuning examples based on (and extended from) [the original implementation](https://github.com/google-research/bert/):
VictorSanh's avatar
VictorSanh committed
1169

1170
- a *sequence-level classifier* on nine different GLUE tasks,
thomwolf's avatar
thomwolf committed
1171
1172
- a *token-level classifier* on the question answering dataset SQuAD, and
- a *sequence-level multiple-choice classifier* on the SWAG classification corpus.
tholor's avatar
tholor committed
1173
- a *BERT language model* on another target corpus
Joel Grus's avatar
Joel Grus committed
1174

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
#### GLUE results on dev set

We get the following results on the dev set of GLUE benchmark with an uncased BERT base 
model. All experiments were run on a P100 GPU with a batch size of 32.

| Task | Metric | Result |
|-|-|-|
| CoLA | Matthew's corr. | 57.29 |
| SST-2 | accuracy | 93.00 |
| MRPC | F1/accuracy | 88.85/83.82 |
| STS-B | Pearson/Spearman corr. | 89.70/89.37 |
| QQP | accuracy/F1 | 90.72/87.41 |
| MNLI | matched acc./mismatched acc.| 83.95/84.39 |
| QNLI | accuracy | 89.04 |
| RTE | accuracy | 61.01 |
| WNLI | accuracy | 53.52 |

Some of these results are significantly different from the ones reported on the test set
of GLUE benchmark on the website. For QQP and WNLI, please refer to [FAQ #12](https://gluebenchmark.com/faq) on the webite.

Before running anyone of these GLUE tasks you should download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.

```shell
export GLUE_DIR=/path/to/glue
export TASK_NAME=MRPC

python run_classifier.py \
  --task_name $TASK_NAME \
  --do_train \
  --do_eval \
  --do_lower_case \
  --data_dir $GLUE_DIR/$TASK_NAME \
  --bert_model bert-base-uncased \
  --max_seq_length 128 \
  --train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3.0 \
  --output_dir /tmp/$TASK_NAME/
```

where task name can be one of CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, WNLI.

The dev set results will be present within the text file 'eval_results.txt' in the specified output_dir. In case of MNLI, since there are two separate dev sets, matched and mismatched, there will be a separate output folder called '/tmp/MNLI-MM/' in addition to '/tmp/MNLI/'.

The code has not been tested with half-precision training with apex on any GLUE task apart from MRPC, MNLI, CoLA, SST-2. The following section provides details on how to run half-precision training with MRPC. With that being said, there shouldn't be any issues in running half-precision training with the remaining GLUE tasks as well, since the data processor for each task inherits from the base class DataProcessor.

1224
1225
1226
1227
1228
1229
#### MRPC

This example code fine-tunes BERT on the Microsoft Research Paraphrase
Corpus (MRPC) corpus and runs in less than 10 minutes on a single K-80 and in 27 seconds (!) on single tesla V100 16GB with apex installed.

Before running this example you should download the
VictorSanh's avatar
VictorSanh committed
1230
1231
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
1232
and unpack it to some directory `$GLUE_DIR`.
VictorSanh's avatar
VictorSanh committed
1233
1234
1235
1236

```shell
export GLUE_DIR=/path/to/glue

1237
python run_classifier.py \
VictorSanh's avatar
VictorSanh committed
1238
1239
1240
  --task_name MRPC \
  --do_train \
  --do_eval \
1241
  --do_lower_case \
VictorSanh's avatar
VictorSanh committed
1242
  --data_dir $GLUE_DIR/MRPC/ \
thomwolf's avatar
thomwolf committed
1243
  --bert_model bert-base-uncased \
VictorSanh's avatar
VictorSanh committed
1244
1245
1246
1247
  --max_seq_length 128 \
  --train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3.0 \
1248
  --output_dir /tmp/mrpc_output/
VictorSanh's avatar
VictorSanh committed
1249
1250
```

Thomas Wolf's avatar
Thomas Wolf committed
1251
Our test ran on a few seeds with [the original implementation hyper-parameters](https://github.com/google-research/bert#sentence-and-sentence-pair-classification-tasks) gave evaluation results between 84% and 88%.
thomwolf's avatar
thomwolf committed
1252

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
**Fast run with apex and 16 bit precision: fine-tuning on MRPC in 27 seconds!**
First install apex as indicated [here](https://github.com/NVIDIA/apex).
Then run
```shell
export GLUE_DIR=/path/to/glue

python run_classifier.py \
  --task_name MRPC \
  --do_train \
  --do_eval \
  --do_lower_case \
  --data_dir $GLUE_DIR/MRPC/ \
  --bert_model bert-base-uncased \
  --max_seq_length 128 \
  --train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3.0 \
1270
1271
  --output_dir /tmp/mrpc_output/ \
  --fp16
1272
1273
```

1274
**Distributed training**
thomwolf's avatar
thomwolf committed
1275
Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking model to reach a F1 > 92 on MRPC:
1276
1277

```bash
thomwolf's avatar
thomwolf committed
1278
python -m torch.distributed.launch --nproc_per_node 8 run_classifier.py   --bert_model bert-large-uncased-whole-word-masking    --task_name MRPC --do_train   --do_eval   --do_lower_case   --data_dir $GLUE_DIR/MRPC/   --max_seq_length 128   --train_batch_size 8   --learning_rate 2e-5   --num_train_epochs 3.0  --output_dir /tmp/mrpc_output/
1279
1280
1281
1282
```

Training with these hyper-parameters gave us the following results:
```bash
thomwolf's avatar
thomwolf committed
1283
1284
1285
1286
1287
1288
  acc = 0.8823529411764706
  acc_and_f1 = 0.901702786377709
  eval_loss = 0.3418912578906332
  f1 = 0.9210526315789473
  global_step = 174
  loss = 0.07231863956341798
1289
1290
```

thomwolf's avatar
thomwolf committed
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
Here is an example on MNLI:

```bash
python -m torch.distributed.launch --nproc_per_node 8 run_classifier.py   --bert_model bert-large-uncased-whole-word-masking    --task_name mnli --do_train   --do_eval   --do_lower_case   --data_dir /datadrive/bert_data/glue_data//MNLI/   --max_seq_length 128   --train_batch_size 8   --learning_rate 2e-5   --num_train_epochs 3.0   --output_dir ../models/wwm-uncased-finetuned-mnli/ --overwrite_output_dir
```

```bash
***** Eval results *****
  acc = 0.8679706601466992
  eval_loss = 0.4911287787382479
  global_step = 18408
  loss = 0.04755385363816904

***** Eval results *****
  acc = 0.8747965825874695
  eval_loss = 0.45516540421714036
  global_step = 18408
  loss = 0.04755385363816904
```

This is the example of the `bert-large-uncased-whole-word-masking-finetuned-mnli` model


1314
1315
#### SQuAD

thomwolf's avatar
thomwolf committed
1316
This example code fine-tunes BERT on the SQuAD dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large) on a single tesla V100 16GB.
VictorSanh's avatar
VictorSanh committed
1317

VictorSanh's avatar
VictorSanh committed
1318
The data for SQuAD can be downloaded with the following links and should be saved in a `$SQUAD_DIR` directory.
1319

VictorSanh's avatar
VictorSanh committed
1320
1321
1322
1323
*   [train-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json)
*   [dev-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json)
*   [evaluate-v1.1.py](https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py)

VictorSanh's avatar
VictorSanh committed
1324
```shell
VictorSanh's avatar
VictorSanh committed
1325
export SQUAD_DIR=/path/to/SQUAD
VictorSanh's avatar
VictorSanh committed
1326

1327
python run_squad.py \
thomwolf's avatar
thomwolf committed
1328
  --bert_model bert-base-uncased \
VictorSanh's avatar
VictorSanh committed
1329
1330
  --do_train \
  --do_predict \
1331
  --do_lower_case \
Thomas Wolf's avatar
Thomas Wolf committed
1332
  --train_file $SQUAD_DIR/train-v1.1.json \
thomwolf's avatar
thomwolf committed
1333
1334
  --predict_file $SQUAD_DIR/dev-v1.1.json \
  --train_batch_size 12 \
Thomas Wolf's avatar
Thomas Wolf committed
1335
  --learning_rate 3e-5 \
thomwolf's avatar
thomwolf committed
1336
1337
1338
  --num_train_epochs 2.0 \
  --max_seq_length 384 \
  --doc_stride 128 \
thomwolf's avatar
thomwolf committed
1339
  --output_dir /tmp/debug_squad/
thomwolf's avatar
thomwolf committed
1340
```
1341

Thomas Wolf's avatar
Thomas Wolf committed
1342
Training with the previous hyper-parameters gave us the following results:
1343
```bash
1344
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json /tmp/debug_squad/predictions.json
Thomas Wolf's avatar
Thomas Wolf committed
1345
{"f1": 88.52381567990474, "exact_match": 81.22043519394512}
1346
```
1347

thomwolf's avatar
thomwolf committed
1348
1349
1350
**distributed training**

Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD:
1351
1352
1353
1354

```bash
python -m torch.distributed.launch --nproc_per_node=8 \
 run_squad.py \
thomwolf's avatar
thomwolf committed
1355
 --bert_model bert-large-uncased-whole-word-masking  \
1356
1357
1358
1359
1360
1361
1362
1363
1364
 --do_train \
 --do_predict \
 --do_lower_case \
 --train_file $SQUAD_DIR/train-v1.1.json \
 --predict_file $SQUAD_DIR/dev-v1.1.json \
 --learning_rate 3e-5 \
 --num_train_epochs 2 \
 --max_seq_length 384 \
 --doc_stride 128 \
thomwolf's avatar
thomwolf committed
1365
 --output_dir ../models/wwm_uncased_finetuned_squad/ \
1366
1367
1368
1369
1370
1371
 --train_batch_size 24 \
 --gradient_accumulation_steps 12
```

Training with these hyper-parameters gave us the following results:
```bash
thomwolf's avatar
thomwolf committed
1372
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ../models/wwm_uncased_finetuned_squad/predictions.json
1373
1374
1375
{"exact_match": 86.91579943235573, "f1": 93.1532499015869}
```

thomwolf's avatar
thomwolf committed
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
This is the model provided as `bert-large-uncased-whole-word-masking-finetuned-squad`.

And here is the model provided as `bert-large-cased-whole-word-masking-finetuned-squad`:

```bash
python -m torch.distributed.launch --nproc_per_node=8  run_squad.py  --bert_model bert-large-cased-whole-word-masking   --do_train  --do_predict  --do_lower_case  --train_file $SQUAD_DIR/train-v1.1.json  --predict_file $SQUAD_DIR/dev-v1.1.json  --learning_rate 3e-5  --num_train_epochs 2  --max_seq_length 384  --doc_stride 128  --output_dir ../models/wwm_cased_finetuned_squad/  --train_batch_size 24  --gradient_accumulation_steps 12
```

Training with these hyper-parameters gave us the following results:
```bash
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ../models/wwm_uncased_finetuned_squad/predictions.json
{"exact_match": 84.18164616840113, "f1": 91.58645594850135}
```

thomwolf's avatar
thomwolf committed
1390
1391
1392
#### SWAG

The data for SWAG can be downloaded by cloning the following [repository](https://github.com/rowanz/swagaf)
1393
1394
1395
1396
1397
1398
1399

```shell
export SWAG_DIR=/path/to/SWAG

python run_swag.py \
  --bert_model bert-base-uncased \
  --do_train \
thomwolf's avatar
thomwolf committed
1400
  --do_lower_case \
1401
  --do_eval \
thomwolf's avatar
thomwolf committed
1402
  --data_dir $SWAG_DIR/data \
1403
  --train_batch_size 16 \
1404
1405
1406
  --learning_rate 2e-5 \
  --num_train_epochs 3.0 \
  --max_seq_length 80 \
thomwolf's avatar
thomwolf committed
1407
  --output_dir /tmp/swag_output/ \
1408
  --gradient_accumulation_steps 4
1409
1410
```

1411
Training with the previous hyper-parameters on a single GPU gave us the following results:
1412
```
1413
1414
1415
1416
eval_accuracy = 0.8062081375587323
eval_loss = 0.5966546792367169
global_step = 13788
loss = 0.06423990014260186
1417
1418
```

tholor's avatar
tholor committed
1419
1420
1421
#### LM Fine-tuning

The data should be a text file in the same format as [sample_text.txt](./samples/sample_text.txt)  (one sentence per line, docs separated by empty line).
Joel Grus's avatar
Joel Grus committed
1422
You can download an [exemplary training corpus](https://ext-bert-sample.obs.eu-de.otc.t-systems.com/small_wiki_sentence_corpus.txt) generated from wikipedia articles and splitted into ~500k sentences with spaCy.
1423
Training one epoch on this corpus takes about 1:20h on 4 x NVIDIA Tesla P100 with `train_batch_size=200` and `max_seq_length=128`:
tholor's avatar
tholor committed
1424
1425


thomwolf's avatar
thomwolf committed
1426
Thank to the work of @Rocketknight1 and @tholor there are now **several scripts** that can be used to fine-tune BERT using the pretraining objective (combination of masked-language modeling and next sentence prediction loss). These scripts are detailed in the [`README`](./examples/lm_finetuning/README.md) of the [`examples/lm_finetuning/`](./examples/lm_finetuning/) folder.
tholor's avatar
tholor committed
1427

thomwolf's avatar
thomwolf committed
1428
### OpenAI GPT, Transformer-XL and GPT-2: running the examples
thomwolf's avatar
thomwolf committed
1429

thomwolf's avatar
thomwolf committed
1430
We provide three examples of scripts for OpenAI GPT, Transformer-XL and OpenAI GPT-2 based on (and extended from) the respective original implementations:
thomwolf's avatar
thomwolf committed
1431
1432
1433

- fine-tuning OpenAI GPT on the ROCStories dataset
- evaluating Transformer-XL on Wikitext 103
thomwolf's avatar
thomwolf committed
1434
- unconditional and conditional generation from a pre-trained OpenAI GPT-2 model
thomwolf's avatar
thomwolf committed
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445

#### Fine-tuning OpenAI GPT on the RocStories dataset

This example code fine-tunes OpenAI GPT on the RocStories dataset.

Before running this example you should download the
[RocStories dataset](https://github.com/snigdhac/StoryComprehension_EMNLP/tree/master/Dataset/RoCStories) and unpack it to some directory `$ROC_STORIES_DIR`.

```shell
export ROC_STORIES_DIR=/path/to/RocStories

thomwolf's avatar
thomwolf committed
1446
1447
python run_openai_gpt.py \
  --model_name openai-gpt \
thomwolf's avatar
thomwolf committed
1448
1449
  --do_train \
  --do_eval \
thomwolf's avatar
thomwolf committed
1450
1451
1452
1453
  --train_dataset $ROC_STORIES_DIR/cloze_test_val__spring2016\ -\ cloze_test_ALL_val.csv \
  --eval_dataset $ROC_STORIES_DIR/cloze_test_test__spring2016\ -\ cloze_test_ALL_test.csv \
  --output_dir ../log \
  --train_batch_size 16 \
thomwolf's avatar
thomwolf committed
1454
1455
```

1456
This command runs in about 10 min on a single K-80 an gives an evaluation accuracy of about 87.7% (the authors report a median accuracy with the TensorFlow code of 85.8% and the OpenAI GPT paper reports a best single run accuracy of 86.5%).
thomwolf's avatar
thomwolf committed
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466

#### Evaluating the pre-trained Transformer-XL on the WikiText 103 dataset

This example code evaluate the pre-trained Transformer-XL on the WikiText 103 dataset.
This command will download a pre-processed version of the WikiText 103 dataset in which the vocabulary has been computed.

```shell
python run_transfo_xl.py --work_dir ../log
```

1467
This command runs in about 1 min on a V100 and gives an evaluation perplexity of 18.22 on WikiText-103 (the authors report a perplexity of about 18.3 on this dataset with the TensorFlow code).
thomwolf's avatar
thomwolf committed
1468

thomwolf's avatar
thomwolf committed
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
#### Unconditional and conditional generation from OpenAI's GPT-2 model

This example code is identical to the original unconditional and conditional generation codes.

Conditional generation:
```shell
python run_gpt2.py
```

Unconditional generation:
```shell
python run_gpt2.py --unconditional
```

The same option as in the original scripts are provided, please refere to the code of the example and the original repository of OpenAI.

thomwolf's avatar
thomwolf committed
1485
## Fine-tuning BERT-large on GPUs
1486
1487
1488

The options we list above allow to fine-tune BERT-large rather easily on GPU(s) instead of the TPU used by the original implementation.

Thomas Wolf's avatar
Thomas Wolf committed
1489
For example, fine-tuning BERT-large on SQuAD can be done on a server with 4 k-80 (these are pretty old now) in 18 hours. Our results are similar to the TensorFlow implementation results (actually slightly higher):
1490
1491
1492
```bash
{"exact_match": 84.56953642384106, "f1": 91.04028647786927}
```
Thomas Wolf's avatar
Thomas Wolf committed
1493
To get these results we used a combination of:
1494
1495
1496
1497
- multi-GPU training (automatically activated on a multi-GPU server),
- 2 steps of gradient accumulation and
- perform the optimization step on CPU to store Adam's averages in RAM.

thomwolf's avatar
thomwolf committed
1498
Here is the full list of hyper-parameters for this run:
1499
```bash
1500
1501
export SQUAD_DIR=/path/to/SQUAD

Thomas Wolf's avatar
Thomas Wolf committed
1502
python ./run_squad.py \
thomwolf's avatar
thomwolf committed
1503
  --bert_model bert-large-uncased \
Thomas Wolf's avatar
Thomas Wolf committed
1504
1505
  --do_train \
  --do_predict \
1506
  --do_lower_case \
1507
1508
  --train_file $SQUAD_DIR/train-v1.1.json \
  --predict_file $SQUAD_DIR/dev-v1.1.json \
Thomas Wolf's avatar
Thomas Wolf committed
1509
1510
1511
1512
  --learning_rate 3e-5 \
  --num_train_epochs 2 \
  --max_seq_length 384 \
  --doc_stride 128 \
1513
  --output_dir /tmp/debug_squad/ \
Thomas Wolf's avatar
Thomas Wolf committed
1514
  --train_batch_size 24 \
Joel Grus's avatar
Joel Grus committed
1515
  --gradient_accumulation_steps 2
1516
```
1517
1518
1519
1520
1521

If you have a recent GPU (starting from NVIDIA Volta series), you should try **16-bit fine-tuning** (FP16).

Here is an example of hyper-parameters for a FP16 run we tried:
```bash
1522
1523
export SQUAD_DIR=/path/to/SQUAD

1524
python ./run_squad.py \
thomwolf's avatar
thomwolf committed
1525
  --bert_model bert-large-uncased \
1526
1527
  --do_train \
  --do_predict \
1528
  --do_lower_case \
1529
1530
  --train_file $SQUAD_DIR/train-v1.1.json \
  --predict_file $SQUAD_DIR/dev-v1.1.json \
1531
1532
1533
1534
  --learning_rate 3e-5 \
  --num_train_epochs 2 \
  --max_seq_length 384 \
  --doc_stride 128 \
1535
  --output_dir /tmp/debug_squad/ \
1536
1537
1538
1539
1540
1541
1542
1543
1544
  --train_batch_size 24 \
  --fp16 \
  --loss_scale 128
```

The results were similar to the above FP32 results (actually slightly higher):
```bash
{"exact_match": 84.65468306527909, "f1": 91.238669287002}
```
thomwolf's avatar
thomwolf committed
1545

1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
Here is an example with the recent `bert-large-uncased-whole-word-masking`:

```bash
python -m torch.distributed.launch --nproc_per_node=8 \
  run_squad.py \
  --bert_model bert-large-uncased-whole-word-masking \
  --do_train \
  --do_predict \
  --do_lower_case \
  --train_file $SQUAD_DIR/train-v1.1.json \
  --predict_file $SQUAD_DIR/dev-v1.1.json \
  --learning_rate 3e-5 \
1558
  --num_train_epochs 2 \
1559
1560
  --max_seq_length 384 \
  --doc_stride 128 \
1561
1562
1563
  --output_dir /tmp/debug_squad/ \
  --train_batch_size 24 \
  --gradient_accumulation_steps 2
1564
1565
```

thomwolf's avatar
thomwolf committed
1566
## Notebooks
thomwolf's avatar
thomwolf committed
1567

Thomas Wolf's avatar
Thomas Wolf committed
1568
We include [three Jupyter Notebooks](https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/notebooks) that can be used to check that the predictions of the PyTorch model are identical to the predictions of the original TensorFlow model.
thomwolf's avatar
thomwolf committed
1569

thomwolf's avatar
thomwolf committed
1570
1571
1572
- The first NoteBook ([Comparing-TF-and-PT-models.ipynb](./notebooks/Comparing-TF-and-PT-models.ipynb)) extracts the hidden states of a full sequence on each layers of the TensorFlow and the PyTorch models and computes the standard deviation between them. In the given example, we get a standard deviation of 1.5e-7 to 9e-7 on the various hidden state of the models.

- The second NoteBook ([Comparing-TF-and-PT-models-SQuAD.ipynb](./notebooks/Comparing-TF-and-PT-models-SQuAD.ipynb)) compares the loss computed by the TensorFlow and the PyTorch models for identical initialization of the fine-tuning layer of the `BertForQuestionAnswering` and computes the standard deviation between them. In the given example, we get a standard deviation of 2.5e-7 between the models.
thomwolf's avatar
thomwolf committed
1573

Thomas Wolf's avatar
Thomas Wolf committed
1574
- The third NoteBook ([Comparing-TF-and-PT-models-MLM-NSP.ipynb](./notebooks/Comparing-TF-and-PT-models-MLM-NSP.ipynb)) compares the predictions computed by the TensorFlow and the PyTorch models for masked token language modeling using the pre-trained masked language modeling model.
thomwolf's avatar
thomwolf committed
1575

thomwolf's avatar
thomwolf committed
1576
Please follow the instructions given in the notebooks to run and modify them.
thomwolf's avatar
thomwolf committed
1577

thomwolf's avatar
thomwolf committed
1578
## Command-line interface
thomwolf's avatar
thomwolf committed
1579

thomwolf's avatar
thomwolf committed
1580
1581
1582
A command-line interface is provided to convert a TensorFlow checkpoint in a PyTorch dump of the `BertForPreTraining` class  (for BERT) or NumPy checkpoint in a PyTorch dump of the `OpenAIGPTModel` class  (for OpenAI GPT).

### BERT
thomwolf's avatar
thomwolf committed
1583

Weixin Wang's avatar
Weixin Wang committed
1584
You can convert any TensorFlow checkpoint for BERT (in particular [the pre-trained models released by Google](https://github.com/google-research/bert#pre-trained-models)) in a PyTorch save file by using the [`convert_tf_checkpoint_to_pytorch.py`](./pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py ) script.
thomwolf's avatar
thomwolf committed
1585

Weixin Wang's avatar
Weixin Wang committed
1586
This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can be imported using `torch.load()` (see examples in [`extract_features.py`](./examples/extract_features.py), [`run_classifier.py`](./examples/run_classifier.py) and [`run_squad.py`](./examples/run_squad.py)).
thomwolf's avatar
thomwolf committed
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596

You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow checkpoint (the three files starting with `bert_model.ckpt`) but be sure to keep the configuration file (`bert_config.json`) and the vocabulary file (`vocab.txt`) as these are needed for the PyTorch model too.

To run this specific conversion script you will need to have TensorFlow and PyTorch installed (`pip install tensorflow`). The rest of the repository only requires PyTorch.

Here is an example of the conversion process for a pre-trained `BERT-Base Uncased` model:

```shell
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12

thomwolf's avatar
thomwolf committed
1597
pytorch_pretrained_bert convert_tf_checkpoint_to_pytorch \
thomwolf's avatar
thomwolf committed
1598
1599
1600
  $BERT_BASE_DIR/bert_model.ckpt \
  $BERT_BASE_DIR/bert_config.json \
  $BERT_BASE_DIR/pytorch_model.bin
thomwolf's avatar
thomwolf committed
1601
1602
1603
1604
```

You can download Google's pre-trained models for the conversion [here](https://github.com/google-research/bert#pre-trained-models).

thomwolf's avatar
thomwolf committed
1605
1606
### OpenAI GPT

thomwolf's avatar
thomwolf committed
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint save as the same format than OpenAI pretrained model (see [here](https://github.com/openai/finetune-transformer-lm))

```shell
export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights

pytorch_pretrained_bert convert_openai_checkpoint \
  $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
  $PYTORCH_DUMP_OUTPUT \
  [OPENAI_GPT_CONFIG]
```

### Transformer-XL

Here is an example of the conversion process for a pre-trained Transformer-XL model (see [here](https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models))
thomwolf's avatar
thomwolf committed
1621
1622

```shell
thomwolf's avatar
thomwolf committed
1623
export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint
thomwolf's avatar
thomwolf committed
1624

thomwolf's avatar
thomwolf committed
1625
1626
pytorch_pretrained_bert convert_transfo_xl_checkpoint \
  $TRANSFO_XL_CHECKPOINT_FOLDER_PATH \
thomwolf's avatar
thomwolf committed
1627
  $PYTORCH_DUMP_OUTPUT \
thomwolf's avatar
thomwolf committed
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
  [TRANSFO_XL_CONFIG]
```

### GPT-2

Here is an example of the conversion process for a pre-trained OpenAI's GPT-2 model.

```shell
export GPT2_DIR=/path/to/gpt2/checkpoint

pytorch_pretrained_bert convert_gpt2_checkpoint \
  $GPT2_DIR/model.ckpt \
  $PYTORCH_DUMP_OUTPUT \
  [GPT2_CONFIG]
thomwolf's avatar
thomwolf committed
1642
1643
```

thomwolf's avatar
thomwolf committed
1644
## TPU
thomwolf's avatar
thomwolf committed
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654

TPU support and pretraining scripts

TPU are not supported by the current stable release of PyTorch (0.4.1). However, the next version of PyTorch (v1.0) should support training on TPU and is expected to be released soon (see the recent [official announcement](https://cloud.google.com/blog/products/ai-machine-learning/introducing-pytorch-across-google-cloud)).

We will add TPU support when this next release is published.

The original TensorFlow code further comprises two scripts for pre-training BERT: [create_pretraining_data.py](https://github.com/google-research/bert/blob/master/create_pretraining_data.py) and [run_pretraining.py](https://github.com/google-research/bert/blob/master/run_pretraining.py).

Since, pre-training BERT is a particularly expensive operation that basically requires one or several TPUs to be completed in a reasonable amout of time (see details [here](https://github.com/google-research/bert#pre-training-with-bert)) we have decided to wait for the inclusion of TPU support in PyTorch to convert these pre-training scripts.