Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
ada22a1c
Unverified
Commit
ada22a1c
authored
Feb 18, 2019
by
Thomas Wolf
Committed by
GitHub
Feb 18, 2019
Browse files
more details in GPT-2 usage example
parent
522733f6
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
19 additions
and
9 deletions
+19
-9
README.md
README.md
+19
-9
No files found.
README.md
View file @
ada22a1c
...
@@ -400,12 +400,15 @@ logging.basicConfig(level=logging.INFO)
...
@@ -400,12 +400,15 @@ logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# Encode input
# Encode some inputs
text = "Who was Jim Henson ? Jim Henson was a puppeteer"
text_1 = "Who was Jim Henson ?"
indexed_tokens = tokenizer.encode(text)
text_2 = "Jim Henson was a puppeteer"
indexed_tokens_1 = tokenizer.encode(text_1)
indexed_tokens_2 = tokenizer.encode(text_2)
# Convert inputs to PyTorch tensors
# Convert inputs to PyTorch tensors
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
```
```
Let's see how to use `
GPT2Model
` to get hidden states
Let's see how to use `
GPT2Model
` to get hidden states
...
@@ -416,12 +419,16 @@ model = GPT2Model.from_pretrained('gpt2')
...
@@ -416,12 +419,16 @@ model = GPT2Model.from_pretrained('gpt2')
model.eval()
model.eval()
# If you have a GPU, put everything on cuda
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
tokens_tensor_1 = tokens_tensor_1.to('cuda')
tokens_tensor_2 = tokens_tensor_2.to('cuda')
model.to('cuda')
model.to('cuda')
# Predict hidden states features for each layer
# Predict hidden states features for each layer
with torch.no_grad():
with torch.no_grad():
hidden_states = model(tokens_tensor)
hidden_states_1, past = model(tokens_tensor_1)
# past can be used to reuse precomputed hidden state in a subsequent predictions
# (see beam-search examples in the run_gpt2.py example
hidden_states-2, past = model(tokens_tensor_2, past=past)
```
```
And how to use `
GPT2LMHeadModel
`
And how to use `
GPT2LMHeadModel
`
...
@@ -432,15 +439,18 @@ model = GPT2LMHeadModel.from_pretrained('gpt2')
...
@@ -432,15 +439,18 @@ model = GPT2LMHeadModel.from_pretrained('gpt2')
model.eval()
model.eval()
# If you have a GPU, put everything on cuda
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
tokens_tensor
_1
= tokens_tensor.to('cuda')
model.to('cuda')
model.to('cuda')
# Predict all tokens
# Predict all tokens
with torch.no_grad():
with torch.no_grad():
predictions = model(tokens_tensor)
predictions_1, past = model(tokens_tensor_1)
# past can be used to reuse precomputed hidden state in a subsequent predictions
# (see beam-search examples in the run_gpt2.py example
predictions_2, past = model(tokens_tensor_2, past=past)
# get the predicted last token
# get the predicted last token
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_index = torch.argmax(predictions
_2
[0, -1, :]).item()
predicted_token = tokenizer.decode([predicted_index])
predicted_token = tokenizer.decode([predicted_index])
```
```
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment