finetune_on_pregenerated.py 16.1 KB
Newer Older
1
2
from argparse import ArgumentParser
from pathlib import Path
3
import os
4
5
6
7
8
9
import torch
import logging
import json
import random
import numpy as np
from collections import namedtuple
10
from tempfile import TemporaryDirectory
11
12
13

from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler
14
from tqdm import tqdm
15

thomwolf's avatar
thomwolf committed
16
17
18
from pytorch_transformers import WEIGHTS_NAME, CONFIG_NAME
from pytorch_transformers.modeling_bert import BertForPreTraining
from pytorch_transformers.tokenization_bert import BertTokenizer
thomwolf's avatar
thomwolf committed
19
from pytorch_transformers.optimization import AdamW, WarmupLinearSchedule
20
21

InputFeatures = namedtuple("InputFeatures", "input_ids input_mask segment_ids lm_label_ids is_next")
Matthew Carrigan's avatar
Matthew Carrigan committed
22
23
24

log_format = '%(asctime)-10s: %(message)s'
logging.basicConfig(level=logging.INFO, format=log_format)
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58


def convert_example_to_features(example, tokenizer, max_seq_length):
    tokens = example["tokens"]
    segment_ids = example["segment_ids"]
    is_random_next = example["is_random_next"]
    masked_lm_positions = example["masked_lm_positions"]
    masked_lm_labels = example["masked_lm_labels"]

    assert len(tokens) == len(segment_ids) <= max_seq_length  # The preprocessed data should be already truncated
    input_ids = tokenizer.convert_tokens_to_ids(tokens)
    masked_label_ids = tokenizer.convert_tokens_to_ids(masked_lm_labels)

    input_array = np.zeros(max_seq_length, dtype=np.int)
    input_array[:len(input_ids)] = input_ids

    mask_array = np.zeros(max_seq_length, dtype=np.bool)
    mask_array[:len(input_ids)] = 1

    segment_array = np.zeros(max_seq_length, dtype=np.bool)
    segment_array[:len(segment_ids)] = segment_ids

    lm_label_array = np.full(max_seq_length, dtype=np.int, fill_value=-1)
    lm_label_array[masked_lm_positions] = masked_label_ids

    features = InputFeatures(input_ids=input_array,
                             input_mask=mask_array,
                             segment_ids=segment_array,
                             lm_label_ids=lm_label_array,
                             is_next=is_random_next)
    return features


class PregeneratedDataset(Dataset):
59
    def __init__(self, training_path, epoch, tokenizer, num_data_epochs, reduce_memory=False):
60
61
62
63
64
65
66
67
68
69
        self.vocab = tokenizer.vocab
        self.tokenizer = tokenizer
        self.epoch = epoch
        self.data_epoch = epoch % num_data_epochs
        data_file = training_path / f"epoch_{self.data_epoch}.json"
        metrics_file = training_path / f"epoch_{self.data_epoch}_metrics.json"
        assert data_file.is_file() and metrics_file.is_file()
        metrics = json.loads(metrics_file.read_text())
        num_samples = metrics['num_training_examples']
        seq_len = metrics['max_seq_len']
70
71
72
73
74
75
76
77
78
        self.temp_dir = None
        self.working_dir = None
        if reduce_memory:
            self.temp_dir = TemporaryDirectory()
            self.working_dir = Path(self.temp_dir.name)
            input_ids = np.memmap(filename=self.working_dir/'input_ids.memmap',
                                  mode='w+', dtype=np.int32, shape=(num_samples, seq_len))
            input_masks = np.memmap(filename=self.working_dir/'input_masks.memmap',
                                    shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
79
            segment_ids = np.memmap(filename=self.working_dir/'segment_ids.memmap',
80
81
82
83
84
85
86
87
88
89
90
91
                                    shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
            lm_label_ids = np.memmap(filename=self.working_dir/'lm_label_ids.memmap',
                                     shape=(num_samples, seq_len), mode='w+', dtype=np.int32)
            lm_label_ids[:] = -1
            is_nexts = np.memmap(filename=self.working_dir/'is_nexts.memmap',
                                 shape=(num_samples,), mode='w+', dtype=np.bool)
        else:
            input_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.int32)
            input_masks = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
            segment_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
            lm_label_ids = np.full(shape=(num_samples, seq_len), dtype=np.int32, fill_value=-1)
            is_nexts = np.zeros(shape=(num_samples,), dtype=np.bool)
Matthew Carrigan's avatar
Matthew Carrigan committed
92
        logging.info(f"Loading training examples for epoch {epoch}")
93
94
        with data_file.open() as f:
            for i, line in enumerate(tqdm(f, total=num_samples, desc="Training examples")):
95
96
                line = line.strip()
                example = json.loads(line)
97
98
99
100
101
102
103
                features = convert_example_to_features(example, tokenizer, seq_len)
                input_ids[i] = features.input_ids
                segment_ids[i] = features.segment_ids
                input_masks[i] = features.input_mask
                lm_label_ids[i] = features.lm_label_ids
                is_nexts[i] = features.is_next
        assert i == num_samples - 1  # Assert that the sample count metric was true
Matthew Carrigan's avatar
Matthew Carrigan committed
104
        logging.info("Loading complete!")
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        self.num_samples = num_samples
        self.seq_len = seq_len
        self.input_ids = input_ids
        self.input_masks = input_masks
        self.segment_ids = segment_ids
        self.lm_label_ids = lm_label_ids
        self.is_nexts = is_nexts

    def __len__(self):
        return self.num_samples

    def __getitem__(self, item):
        return (torch.tensor(self.input_ids[item].astype(np.int64)),
                torch.tensor(self.input_masks[item].astype(np.int64)),
                torch.tensor(self.segment_ids[item].astype(np.int64)),
                torch.tensor(self.lm_label_ids[item].astype(np.int64)),
                torch.tensor(self.is_nexts[item].astype(np.int64)))


def main():
    parser = ArgumentParser()
    parser.add_argument('--pregenerated_data', type=Path, required=True)
    parser.add_argument('--output_dir', type=Path, required=True)
128
129
    parser.add_argument("--bert_model", type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
130
    parser.add_argument("--do_lower_case", action="store_true")
131
132
    parser.add_argument("--reduce_memory", action="store_true",
                        help="Store training data as on-disc memmaps to massively reduce memory usage")
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

    parser.add_argument("--epochs", type=int, default=3, help="Number of epochs to train for")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
Matthew Carrigan's avatar
Matthew Carrigan committed
154
155
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
                        "0 (default value): dynamic loss scaling.\n"
                        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    args = parser.parse_args()

173
174
    assert args.pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!"
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

    samples_per_epoch = []
    for i in range(args.epochs):
        epoch_file = args.pregenerated_data / f"epoch_{i}.json"
        metrics_file = args.pregenerated_data / f"epoch_{i}_metrics.json"
        if epoch_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch.append(metrics['num_training_examples'])
        else:
            if i == 0:
                exit("No training data was found!")
            print(f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs}).")
            print("This script will loop over the available data, but training diversity may be negatively impacted.")
            num_data_epochs = i
            break
    else:
        num_data_epochs = args.epochs

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
Matthew Carrigan's avatar
Matthew Carrigan committed
202
    logging.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if args.output_dir.is_dir() and list(args.output_dir.iterdir()):
Matthew Carrigan's avatar
Matthew Carrigan committed
218
        logging.warning(f"Output directory ({args.output_dir}) already exists and is not empty!")
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    args.output_dir.mkdir(parents=True, exist_ok=True)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    total_train_examples = 0
    for i in range(args.epochs):
        # The modulo takes into account the fact that we may loop over limited epochs of data
        total_train_examples += samples_per_epoch[i % len(samples_per_epoch)]

    num_train_optimization_steps = int(
        total_train_examples / args.train_batch_size / args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

    # Prepare model
    model = BertForPreTraining.from_pretrained(args.bert_model)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
         'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
262
263
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
264
265
266
267
268
269
270
271
272

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
273
274
        warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                             t_total=num_train_optimization_steps)
275
    else:
thomwolf's avatar
thomwolf committed
276
        optimizer = AdamW(optimizer_grouped_parameters,
277
278
279
280
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

281
282
283
284
285
286
287
288
    global_step = 0
    logging.info("***** Running training *****")
    logging.info(f"  Num examples = {total_train_examples}")
    logging.info("  Batch size = %d", args.train_batch_size)
    logging.info("  Num steps = %d", num_train_optimization_steps)
    model.train()
    for epoch in range(args.epochs):
        epoch_dataset = PregeneratedDataset(epoch=epoch, training_path=args.pregenerated_data, tokenizer=tokenizer,
289
                                            num_data_epochs=num_data_epochs, reduce_memory=args.reduce_memory)
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        if args.local_rank == -1:
            train_sampler = RandomSampler(epoch_dataset)
        else:
            train_sampler = DistributedSampler(epoch_dataset)
        train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        with tqdm(total=len(train_dataloader), desc=f"Epoch {epoch}") as pbar:
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                loss = model(input_ids, segment_ids, input_mask, lm_label_ids, is_next)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                pbar.update(1)
314
                mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps
315
316
                pbar.set_postfix_str(f"Loss: {mean_loss:.5f}")
                if (step + 1) % args.gradient_accumulation_steps == 0:
317
                    if args.fp16:
318
319
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
320
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
321
322
323
324
325
326
327
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    # Save a trained model
328
329
330
    if torch.distributed.get_rank() == 0:
        logging.info("** ** * Saving fine-tuned model ** ** * ")
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
331
    
332
333
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
334

335
336
337
        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)
338
339
340
341


if __name__ == '__main__':
    main()