test_modeling_tf_flaubert.py 12.4 KB
Newer Older
Julien Plu's avatar
Julien Plu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import is_tf_available
19
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
Julien Plu's avatar
Julien Plu committed
20

21
22
23
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor

Julien Plu's avatar
Julien Plu committed
24
25
26

if is_tf_available():
    import numpy as np
27
    import tensorflow as tf
28
29

    from transformers import (
30
        TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
31
        FlaubertConfig,
32
        TFFlaubertForMultipleChoice,
33
        TFFlaubertForQuestionAnsweringSimple,
34
        TFFlaubertForSequenceClassification,
35
        TFFlaubertForTokenClassification,
36
37
        TFFlaubertModel,
        TFFlaubertWithLMHeadModel,
38
39
40
41
42
    )


class TFFlaubertModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
43
44
        self,
        parent,
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = True
        self.scope = None
        self.bos_token_id = 0

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = FlaubertConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
            bos_token_id=self.bos_token_id,
        )

        return (
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            choice_labels,
            input_mask,
        )

    def create_and_check_flaubert_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        model = TFFlaubertModel(config=config)
        inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
145
        result = model(inputs)
146
147

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
148
        result = model(inputs)
149
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

    def create_and_check_flaubert_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        model = TFFlaubertWithLMHeadModel(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
166
        result = model(inputs)
167

168
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

    def create_and_check_flaubert_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        model = TFFlaubertForQuestionAnsweringSimple(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths}

Sylvain Gugger's avatar
Sylvain Gugger committed
186
        result = model(inputs)
187

188
189
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

    def create_and_check_flaubert_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        model = TFFlaubertForSequenceClassification(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths}

Sylvain Gugger's avatar
Sylvain Gugger committed
207
        result = model(inputs)
208

209
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

    def create_and_check_flaubert_for_token_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = TFFlaubertForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
226
        result = model(inputs)
227
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

    def create_and_check_flaubert_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = TFFlaubertForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
251
        result = model(inputs)
252
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            choice_labels,
            input_mask,
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "langs": token_type_ids,
            "lengths": input_lengths,
        }
        return config, inputs_dict


@require_tf
class TFFlaubertModelTest(TFModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            TFFlaubertModel,
            TFFlaubertWithLMHeadModel,
            TFFlaubertForSequenceClassification,
            TFFlaubertForQuestionAnsweringSimple,
            TFFlaubertForTokenClassification,
            TFFlaubertForMultipleChoice,
        )
        if is_tf_available()
        else ()
    )
    all_generative_model_classes = (
        (TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable

    def setUp(self):
        self.model_tester = TFFlaubertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=FlaubertConfig, emb_dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_flaubert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_model(*config_and_inputs)

    def test_flaubert_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_lm_head(*config_and_inputs)

    def test_flaubert_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_qa(*config_and_inputs)

    def test_flaubert_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_sequence_classif(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_for_token_classification(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_for_multiple_choice(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = TFFlaubertModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
Julien Plu's avatar
Julien Plu committed
331

Lysandre Debut's avatar
Lysandre Debut committed
332
333
334
335
336
337
338
339
    def test_saved_model_with_hidden_states_output(self):
        # Should be uncommented during patrick TF refactor
        pass

    def test_saved_model_with_attentions_output(self):
        # Should be uncommented during patrick TF refactor
        pass

Julien Plu's avatar
Julien Plu committed
340
341

@require_tf
342
343
@require_sentencepiece
@require_tokenizers
Julien Plu's avatar
Julien Plu committed
344
345
346
347
348
349
class TFFlaubertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_output_embeds_base_model(self):
        model = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased")

        input_ids = tf.convert_to_tensor(
Lysandre's avatar
Lysandre committed
350
351
            [[0, 158, 735, 2592, 1424, 6727, 82, 1]],
            dtype=tf.int32,
Julien Plu's avatar
Julien Plu committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        )  # "J'aime flaubert !"

        output = model(input_ids)[0]
        expected_shape = tf.TensorShape((1, 8, 512))
        self.assertEqual(output.shape, expected_shape)
        # compare the actual values for a slice.
        expected_slice = tf.convert_to_tensor(
            [
                [
                    [-1.8768773, -1.566555, 0.27072418],
                    [-1.6920038, -0.5873505, 1.9329599],
                    [-2.9563985, -1.6993835, 1.7972052],
                ]
            ],
            dtype=tf.float32,
        )

        self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))