test_modeling_tf_flaubert.py 12.7 KB
Newer Older
Julien Plu's avatar
Julien Plu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import is_tf_available
19
from transformers.testing_utils import require_tf, slow
Julien Plu's avatar
Julien Plu committed
20

21
22
23
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor

Julien Plu's avatar
Julien Plu committed
24
25
26
27

if is_tf_available():
    import tensorflow as tf
    import numpy as np
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

    from transformers import (
        FlaubertConfig,
        TFFlaubertModel,
        TFFlaubertWithLMHeadModel,
        TFFlaubertForSequenceClassification,
        TFFlaubertForQuestionAnsweringSimple,
        TFFlaubertForTokenClassification,
        TFFlaubertForMultipleChoice,
        TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
    )


class TFFlaubertModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = True
        self.scope = None
        self.bos_token_id = 0

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = FlaubertConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
            bos_token_id=self.bos_token_id,
        )

        return (
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            choice_labels,
            input_mask,
        )

    def create_and_check_flaubert_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        model = TFFlaubertModel(config=config)
        inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
        outputs = model(inputs)

        inputs = [input_ids, input_mask]
        outputs = model(inputs)
        sequence_output = outputs[0]
        result = {
            "sequence_output": sequence_output.numpy(),
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
        )

    def create_and_check_flaubert_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        model = TFFlaubertWithLMHeadModel(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
        outputs = model(inputs)

        logits = outputs[0]

        result = {
            "logits": logits.numpy(),
        }

        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.vocab_size])

    def create_and_check_flaubert_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        model = TFFlaubertForQuestionAnsweringSimple(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths}

        start_logits, end_logits = model(inputs)

        result = {
            "start_logits": start_logits.numpy(),
            "end_logits": end_logits.numpy(),
        }

        self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])

    def create_and_check_flaubert_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        model = TFFlaubertForSequenceClassification(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths}

        (logits,) = model(inputs)

        result = {
            "logits": logits.numpy(),
        }

        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.type_sequence_label_size])

    def create_and_check_flaubert_for_token_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = TFFlaubertForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        (logits,) = model(inputs)
        result = {
            "logits": logits.numpy(),
        }
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels])

    def create_and_check_flaubert_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = TFFlaubertForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
        (logits,) = model(inputs)
        result = {"logits": logits.numpy()}
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            choice_labels,
            input_mask,
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "langs": token_type_ids,
            "lengths": input_lengths,
        }
        return config, inputs_dict


@require_tf
class TFFlaubertModelTest(TFModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            TFFlaubertModel,
            TFFlaubertWithLMHeadModel,
            TFFlaubertForSequenceClassification,
            TFFlaubertForQuestionAnsweringSimple,
            TFFlaubertForTokenClassification,
            TFFlaubertForMultipleChoice,
        )
        if is_tf_available()
        else ()
    )
    all_generative_model_classes = (
        (TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable

    def setUp(self):
        self.model_tester = TFFlaubertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=FlaubertConfig, emb_dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_flaubert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_model(*config_and_inputs)

    def test_flaubert_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_lm_head(*config_and_inputs)

    def test_flaubert_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_qa(*config_and_inputs)

    def test_flaubert_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_sequence_classif(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_for_token_classification(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_for_multiple_choice(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = TFFlaubertModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
Julien Plu's avatar
Julien Plu committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382


@require_tf
class TFFlaubertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_output_embeds_base_model(self):
        model = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased")

        input_ids = tf.convert_to_tensor(
            [[0, 158, 735, 2592, 1424, 6727, 82, 1]], dtype=tf.int32,
        )  # "J'aime flaubert !"

        output = model(input_ids)[0]
        expected_shape = tf.TensorShape((1, 8, 512))
        self.assertEqual(output.shape, expected_shape)
        # compare the actual values for a slice.
        expected_slice = tf.convert_to_tensor(
            [
                [
                    [-1.8768773, -1.566555, 0.27072418],
                    [-1.6920038, -0.5873505, 1.9329599],
                    [-2.9563985, -1.6993835, 1.7972052],
                ]
            ],
            dtype=tf.float32,
        )

        self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))