test_modeling_bert.py 18.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_generation_utils import GenerationTesterMixin
24
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
thomwolf's avatar
thomwolf committed
25

Aymeric Augustin's avatar
Aymeric Augustin committed
26

27
if is_torch_available():
28
29
    import torch

30
    from transformers import (
31
        MODEL_FOR_PRETRAINING_MAPPING,
32
33
        BertConfig,
        BertForMaskedLM,
34
        BertForMultipleChoice,
35
36
37
38
39
        BertForNextSentencePrediction,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
        BertForTokenClassification,
40
41
        BertLMHeadModel,
        BertModel,
42
    )
43
    from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
44

thomwolf's avatar
thomwolf committed
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class BertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
100
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = BertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )
thomwolf's avatar
thomwolf committed
128

129
130
131
        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def prepare_config_and_inputs_for_decoder(self):
132
        (
133
134
135
136
137
138
139
140
141
142
143
144
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
thomwolf's avatar
thomwolf committed
145

146
        return (
147
148
149
150
151
152
153
154
155
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
156
157
        )

158
    def create_and_check_model(
159
160
161
162
163
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
164
165
166
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
167
168
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
169

170
    def create_and_check_model_as_decoder(
171
172
173
174
175
176
177
178
179
180
181
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
182
        config.add_cross_attention = True
183
184
185
        model = BertModel(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
186
        result = model(
187
188
189
190
191
192
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
193
        result = model(
194
195
196
197
198
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
199
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
Stas Bekman's avatar
Stas Bekman committed
200
201
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
202

203
    def create_and_check_for_causal_lm(
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = BertLMHeadModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
218
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
219
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
220

221
    def create_and_check_for_masked_lm(
222
223
224
225
226
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
227
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
228
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
229

230
    def create_and_check_model_for_causal_lm_as_decoder(
231
232
233
234
235
236
237
238
239
240
241
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
242
        config.add_cross_attention = True
243
        model = BertLMHeadModel(config=config)
244
245
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
246
        result = model(
247
248
249
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
250
            labels=token_labels,
251
252
253
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
254
        result = model(
255
256
257
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
258
            labels=token_labels,
259
260
            encoder_hidden_states=encoder_hidden_states,
        )
Stas Bekman's avatar
Stas Bekman committed
261
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
262

263
    def create_and_check_for_next_sequence_prediction(
264
265
266
267
268
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForNextSentencePrediction(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
269
        result = model(
Lysandre's avatar
Lysandre committed
270
271
272
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
273
            labels=sequence_labels,
274
        )
Stas Bekman's avatar
Stas Bekman committed
275
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
276

277
    def create_and_check_for_pretraining(
278
279
280
281
282
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
283
        result = model(
284
285
286
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
287
            labels=token_labels,
288
289
            next_sentence_label=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
290
291
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
292

293
    def create_and_check_for_question_answering(
294
295
296
297
298
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
299
        result = model(
300
301
302
303
304
305
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
306
307
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
308

309
    def create_and_check_for_sequence_classification(
310
311
312
313
314
315
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
316
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
317
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
318

319
    def create_and_check_for_token_classification(
320
321
322
323
324
325
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
326
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
327
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
328

329
    def create_and_check_for_multiple_choice(
330
331
332
333
334
335
336
337
338
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = BertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
339
        result = model(
340
341
342
343
344
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
345
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
346
347
348
349

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
350
351
352
353
354
355
356
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
357
358
359
360
361
362
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
363
class BertModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
364
365
366
367

    all_model_classes = (
        (
            BertModel,
368
            BertLMHeadModel,
369
            BertForMaskedLM,
370
            BertForMultipleChoice,
371
372
373
374
375
376
377
378
379
            BertForNextSentencePrediction,
            BertForPreTraining,
            BertForQuestionAnswering,
            BertForSequenceClassification,
            BertForTokenClassification,
        )
        if is_torch_available()
        else ()
    )
380
    all_generative_model_classes = (BertLMHeadModel,) if is_torch_available() else ()
thomwolf's avatar
thomwolf committed
381

382
383
384
385
386
387
388
389
390
391
392
393
394
395
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class in MODEL_FOR_PRETRAINING_MAPPING.values():
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
                inputs_dict["next_sentence_label"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

thomwolf's avatar
thomwolf committed
396
    def setUp(self):
397
        self.model_tester = BertModelTester(self)
thomwolf's avatar
thomwolf committed
398
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)
thomwolf's avatar
thomwolf committed
399
400

    def test_config(self):
thomwolf's avatar
thomwolf committed
401
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
402

403
    def test_model(self):
thomwolf's avatar
thomwolf committed
404
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
405
        self.model_tester.create_and_check_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
406

407
    def test_model_as_decoder(self):
408
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
409
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
410

411
    def test_model_as_decoder_with_default_input_mask(self):
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

427
        self.model_tester.create_and_check_model_as_decoder(
428
429
430
431
432
433
434
435
436
437
438
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

439
440
    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
441
        self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
442

thomwolf's avatar
thomwolf committed
443
444
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
445
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
thomwolf's avatar
thomwolf committed
446

447
    def test_for_causal_lm_decoder(self):
448
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
449
        self.model_tester.create_and_check_model_for_causal_lm_as_decoder(*config_and_inputs)
450

thomwolf's avatar
thomwolf committed
451
452
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
453
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
thomwolf's avatar
thomwolf committed
454

thomwolf's avatar
thomwolf committed
455
456
    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
457
        self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs)
thomwolf's avatar
thomwolf committed
458

thomwolf's avatar
thomwolf committed
459
460
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
461
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
thomwolf's avatar
thomwolf committed
462

thomwolf's avatar
thomwolf committed
463
464
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
465
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
thomwolf's avatar
thomwolf committed
466

thomwolf's avatar
thomwolf committed
467
468
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
469
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
470

thomwolf's avatar
thomwolf committed
471
472
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
473
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
474

475
    @slow
thomwolf's avatar
thomwolf committed
476
    def test_model_from_pretrained(self):
477
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
478
            model = BertModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
479
            self.assertIsNotNone(model)