test_image_processing_vit.py 4.13 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers.testing_utils import require_torch, require_vision
20
from transformers.utils import is_torchvision_available, is_vision_available
21

22
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
23
24
25


if is_vision_available():
26
    from transformers import ViTImageProcessor
27

28
29
30
if is_torchvision_available():
    from transformers import ViTImageProcessorFast

31

32
class ViTImageProcessingTester(unittest.TestCase):
33
34
35
36
37
38
39
40
41
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
42
        size=None,
NielsRogge's avatar
NielsRogge committed
43
44
45
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
46
    ):
amyeroberts's avatar
amyeroberts committed
47
        size = size if size is not None else {"height": 18, "width": 18}
48
49
50
51
52
53
54
55
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
NielsRogge's avatar
NielsRogge committed
56
57
58
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
59

60
    def prepare_image_processor_dict(self):
61
62
63
64
65
66
67
68
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
        }

69
70
71
72
73
74
75
76
77
78
79
80
81
82
    def expected_output_image_shape(self, images):
        return self.num_channels, self.size["height"], self.size["width"]

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

83
84
85

@require_torch
@require_vision
86
class ViTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
87
    image_processing_class = ViTImageProcessor if is_vision_available() else None
88
    fast_image_processing_class = ViTImageProcessorFast if is_torchvision_available() else None
89
90

    def setUp(self):
amyeroberts's avatar
amyeroberts committed
91
        super().setUp()
92
        self.image_processor_tester = ViTImageProcessingTester(self)
93
94

    @property
95
96
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()
97

98
    def test_image_processor_properties(self):
amyeroberts's avatar
amyeroberts committed
99
100
101
102
103
104
105
        for image_processing_class in self.image_processor_list:
            image_processing = image_processing_class(**self.image_processor_dict)
            self.assertTrue(hasattr(image_processing, "image_mean"))
            self.assertTrue(hasattr(image_processing, "image_std"))
            self.assertTrue(hasattr(image_processing, "do_normalize"))
            self.assertTrue(hasattr(image_processing, "do_resize"))
            self.assertTrue(hasattr(image_processing, "size"))
106

107
    def test_image_processor_from_dict_with_kwargs(self):
amyeroberts's avatar
amyeroberts committed
108
109
110
        for image_processing_class in self.image_processor_list:
            image_processor = image_processing_class.from_dict(self.image_processor_dict)
            self.assertEqual(image_processor.size, {"height": 18, "width": 18})
111

amyeroberts's avatar
amyeroberts committed
112
113
            image_processor = image_processing_class.from_dict(self.image_processor_dict, size=42)
            self.assertEqual(image_processor.size, {"height": 42, "width": 42})