test_image_processing_vit.py 7.12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_torch_available, is_vision_available
23

24
25
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import ViTFeatureExtractor


class ViTFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
47
        size=None,
NielsRogge's avatar
NielsRogge committed
48
49
50
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
51
    ):
amyeroberts's avatar
amyeroberts committed
52
        size = size if size is not None else {"height": 18, "width": 18}
53
54
55
56
57
58
59
60
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
NielsRogge's avatar
NielsRogge committed
61
62
63
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

    def prepare_feat_extract_dict(self):
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
        }


@require_torch
@require_vision
class ViTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):

    feature_extraction_class = ViTFeatureExtractor if is_vision_available() else None

    def setUp(self):
        self.feature_extract_tester = ViTFeatureExtractionTester(self)

    @property
    def feat_extract_dict(self):
        return self.feature_extract_tester.prepare_feat_extract_dict()

    def test_feat_extract_properties(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        self.assertTrue(hasattr(feature_extractor, "image_mean"))
        self.assertTrue(hasattr(feature_extractor, "image_std"))
        self.assertTrue(hasattr(feature_extractor, "do_normalize"))
        self.assertTrue(hasattr(feature_extractor, "do_resize"))
        self.assertTrue(hasattr(feature_extractor, "size"))

96
97
98
99
100
101
102
    def test_feat_extract_from_dict_with_kwargs(self):
        feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict)
        self.assertEqual(feature_extractor.size, {"height": 18, "width": 18})

        feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict, size=42)
        self.assertEqual(feature_extractor.size, {"height": 42, "width": 42})

103
104
105
106
107
108
109
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PIL images
NielsRogge's avatar
NielsRogge committed
110
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
111
112
113
114
115
116
117
118
119
120
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
121
122
                self.feature_extract_tester.size["height"],
                self.feature_extract_tester.size["width"],
123
124
125
126
127
128
129
130
131
132
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
133
134
                self.feature_extract_tester.size["height"],
                self.feature_extract_tester.size["width"],
135
136
137
138
139
140
141
            ),
        )

    def test_call_numpy(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random numpy tensors
NielsRogge's avatar
NielsRogge committed
142
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
143
144
145
146
147
148
149
150
151
152
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
153
154
                self.feature_extract_tester.size["height"],
                self.feature_extract_tester.size["width"],
155
156
157
158
159
160
161
162
163
164
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
165
166
                self.feature_extract_tester.size["height"],
                self.feature_extract_tester.size["width"],
167
168
169
170
171
172
173
            ),
        )

    def test_call_pytorch(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PyTorch tensors
NielsRogge's avatar
NielsRogge committed
174
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
175
176
177
178
179
180
181
182
183
184
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
185
186
                self.feature_extract_tester.size["height"],
                self.feature_extract_tester.size["width"],
187
188
189
190
191
192
193
194
195
196
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
197
198
                self.feature_extract_tester.size["height"],
                self.feature_extract_tester.size["width"],
199
200
            ),
        )