"host/online_compilation/CMakeLists.txt" did not exist on "8f5f64960e36ce7679bfc827e4652f48c2c4bddb"
test_onnx_v2.py 11.7 KB
Newer Older
1
2
3
4
5
from pathlib import Path
from tempfile import NamedTemporaryFile
from unittest import TestCase
from unittest.mock import patch

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from transformers import (  # LongformerConfig,; T5Config,
    AlbertConfig,
    AutoTokenizer,
    BartConfig,
    DistilBertConfig,
    GPT2Config,
    GPTNeoConfig,
    LayoutLMConfig,
    MBartConfig,
    RobertaConfig,
    XLMRobertaConfig,
    is_torch_available,
)
from transformers.models.albert import AlbertOnnxConfig
from transformers.models.bart import BartOnnxConfig
from transformers.models.bert.configuration_bert import BertConfig, BertOnnxConfig
from transformers.models.distilbert import DistilBertOnnxConfig

# from transformers.models.longformer import LongformerOnnxConfig
from transformers.models.gpt2 import GPT2OnnxConfig
from transformers.models.gpt_neo import GPTNeoOnnxConfig
from transformers.models.layoutlm import LayoutLMOnnxConfig
from transformers.models.mbart import MBartOnnxConfig
from transformers.models.roberta import RobertaOnnxConfig

# from transformers.models.t5 import T5OnnxConfig
from transformers.models.xlm_roberta import XLMRobertaOnnxConfig
33
34
35
36
37
38
39
from transformers.onnx import (
    EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
    OnnxConfig,
    ParameterFormat,
    export,
    validate_model_outputs,
)
40
from transformers.onnx.config import DEFAULT_ONNX_OPSET, OnnxConfigWithPast
41
from transformers.onnx.utils import compute_effective_axis_dimension, compute_serialized_parameters_size
42
43
44
45
46
47
48
49
50
from transformers.testing_utils import require_onnx, require_torch, slow


@require_onnx
class OnnxUtilsTestCaseV2(TestCase):
    """
    Cover all the utilities involved to export ONNX models
    """

51
52
53
54
55
56
57
58
59
    @require_torch
    @patch("transformers.onnx.convert.is_torch_onnx_dict_inputs_support_available", return_value=False)
    def test_ensure_pytorch_version_ge_1_8_0(self, mock_is_torch_onnx_dict_inputs_support_available):
        """
        Ensure we raise an Exception if the pytorch version is unsupported (< 1.8.0)
        """
        self.assertRaises(AssertionError, export, None, None, None, None, None)
        mock_is_torch_onnx_dict_inputs_support_available.assert_called()

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    def test_compute_effective_axis_dimension(self):
        """
        When exporting ONNX model with dynamic axis (batch or sequence) we set batch_size and/or sequence_length = -1.
        We cannot generate an effective tensor with axis dim == -1, so we trick by using some "fixed" values
        (> 1 to avoid ONNX squeezing the axis).

        This test ensure we are correctly replacing generated batch / sequence tensor with axis > 1
        """

        # Dynamic axis (batch, no token added by the tokenizer)
        self.assertEqual(compute_effective_axis_dimension(-1, fixed_dimension=2, num_token_to_add=0), 2)

        # Static axis (batch, no token added by the tokenizer)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=2, num_token_to_add=0), 2)

        # Dynamic axis (sequence, token added by the tokenizer 2 (no pair))
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)

        # Dynamic axis (sequence, token added by the tokenizer 3 (pair))
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)

    def test_compute_parameters_serialized_size(self):
        """
        This test ensures we compute a "correct" approximation of the underlying storage requirement (size) for all the
        parameters for the specified parameter's dtype.
        """
        self.assertEqual(compute_serialized_parameters_size(2, ParameterFormat.Float), 2 * ParameterFormat.Float.size)

    def test_flatten_output_collection_property(self):
        """
        This test ensures we correctly flatten nested collection such as the one we use when returning past_keys.
        past_keys = Tuple[Tuple]

        ONNX exporter will export nested collections as ${collection_name}.${level_idx_0}.${level_idx_1}...${idx_n}
        """
        self.assertEqual(
98
            OnnxConfig.flatten_output_collection_property("past_key", [[0], [1], [2]]),
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
            {
                "past_key.0": 0,
                "past_key.1": 1,
                "past_key.2": 2,
            },
        )


class OnnxConfigTestCaseV2(TestCase):
    """
    Cover the test for models default.

    Default means no specific features is being enabled on the model.
    """

    @patch.multiple(OnnxConfig, __abstractmethods__=set())
    def test_use_external_data_format(self):
        """
        External data format is required only if the serialized size of the parameters if bigger than 2Gb
        """
        TWO_GB_LIMIT = EXTERNAL_DATA_FORMAT_SIZE_LIMIT

        # No parameters
        self.assertFalse(OnnxConfig.use_external_data_format(0))

        # Some parameters
        self.assertFalse(OnnxConfig.use_external_data_format(1))

        # Almost 2Gb parameters
        self.assertFalse(OnnxConfig.use_external_data_format((TWO_GB_LIMIT - 1) // ParameterFormat.Float.size))

        # Exactly 2Gb parameters
        self.assertTrue(OnnxConfig.use_external_data_format(TWO_GB_LIMIT))

        # More than 2Gb parameters
        self.assertTrue(OnnxConfig.use_external_data_format((TWO_GB_LIMIT + 1) // ParameterFormat.Float.size))


class OnnxConfigWithPastTestCaseV2(TestCase):
    """
    Cover the tests for model which have use_cache feature (i.e. "with_past" for ONNX)
    """

142
143
144
145
146
    SUPPORTED_WITH_PAST_CONFIGS = {
        ("BART", BartConfig),
        ("GPT2", GPT2Config),
        # ("T5", T5Config)
    }
147
148
149
150
151
152
153
154
155

    @patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
    def test_use_past(self):
        """
        Ensure the use_past variable is correctly being set
        """
        for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
            with self.subTest(name):
                self.assertFalse(
156
157
                    OnnxConfigWithPast.from_model_config(config()).use_past,
                    "OnnxConfigWithPast.from_model_config() should not use_past",
158
159
160
                )

                self.assertTrue(
161
162
                    OnnxConfigWithPast.with_past(config()).use_past,
                    "OnnxConfigWithPast.from_model_config() should use_past",
163
164
165
166
167
168
169
170
171
172
173
                )

    @patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
    def test_values_override(self):
        """
        Ensure the use_past variable correctly set the `use_cache` value in model's configuration
        """
        for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
            with self.subTest(name):

                # without past
174
                onnx_config_default = OnnxConfigWithPast.from_model_config(config())
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
                self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
                self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
                self.assertFalse(
                    onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
                )

                # with past
                onnx_config_default = OnnxConfigWithPast.with_past(config())
                self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
                self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
                self.assertTrue(
                    onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
                )


190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
if is_torch_available():
    from transformers import (  # T5Model,
        AlbertModel,
        BartModel,
        BertModel,
        DistilBertModel,
        GPT2Model,
        GPTNeoModel,
        LayoutLMModel,
        MBartModel,
        RobertaModel,
        XLMRobertaModel,
    )

    PYTORCH_EXPORT_DEFAULT_MODELS = {
        ("ALBERT", "hf-internal-testing/tiny-albert", AlbertModel, AlbertConfig, AlbertOnnxConfig),
        ("BART", "facebook/bart-base", BartModel, BartConfig, BartOnnxConfig),
        ("BERT", "bert-base-cased", BertModel, BertConfig, BertOnnxConfig),
        ("DistilBERT", "distilbert-base-cased", DistilBertModel, DistilBertConfig, DistilBertOnnxConfig),
        ("GPT2", "gpt2", GPT2Model, GPT2Config, GPT2OnnxConfig),
        ("GPT-Neo", "EleutherAI/gpt-neo-125M", GPTNeoModel, GPTNeoConfig, GPTNeoOnnxConfig),
        # ("LongFormer", "longformer-base-4096", LongformerModel, LongformerConfig, LongformerOnnxConfig),
        ("Roberta", "roberta-base", RobertaModel, RobertaConfig, RobertaOnnxConfig),
        ("XLM-Roberta", "roberta-base", XLMRobertaModel, XLMRobertaConfig, XLMRobertaOnnxConfig),
        ("LayoutLM", "microsoft/layoutlm-base-uncased", LayoutLMModel, LayoutLMConfig, LayoutLMOnnxConfig),
        ("MBart", "sshleifer/tiny-mbart", MBartModel, MBartConfig, MBartOnnxConfig),
        # ("T5", "t5-small", T5Model, T5Config, T5OnnxConfig),
    }

    PYTORCH_EXPORT_WITH_PAST_MODELS = {
        # ("BART", "facebook/bart-base", BartModel, BartConfig, BartOnnxConfig),
        # ("GPT2", "gpt2", GPT2Model, GPT2Config, GPT2OnnxConfig),
        # ("T5", "t5-small", T5Model, T5Config, T5OnnxConfig)
    }
224
225
226
227
228
229
230


class OnnxExportTestCaseV2(TestCase):
    """
    Integration tests ensuring supported models are correctly exported
    """

231
232
233
    @slow
    @require_torch
    def test_pytorch_export_default(self):
234
235
        from transformers.onnx import export

236
237
238
        for name, model, model_class, config_class, onnx_config_class in PYTORCH_EXPORT_DEFAULT_MODELS:
            with self.subTest(name):
                self.assertTrue(hasattr(onnx_config_class, "from_model_config"))
239

240
241
242
                tokenizer = AutoTokenizer.from_pretrained(model)
                model = model_class(config_class.from_pretrained(model))
                onnx_config = onnx_config_class.from_model_config(model.config)
243

244
245
246
247
248
249
250
251
252
                with NamedTemporaryFile("w") as output:
                    onnx_inputs, onnx_outputs = export(
                        tokenizer, model, onnx_config, DEFAULT_ONNX_OPSET, Path(output.name)
                    )

                    try:
                        validate_model_outputs(onnx_config, tokenizer, model, Path(output.name), onnx_outputs, 1e-5)
                    except ValueError as ve:
                        self.fail(f"{name} -> {ve}")
253

254
255
    @slow
    @require_torch
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    def test_pytorch_export_with_past(self):
        from transformers.onnx import export

        for name, model, model_class, config_class, onnx_config_class in PYTORCH_EXPORT_WITH_PAST_MODELS:
            with self.subTest(name):
                self.assertTrue(hasattr(onnx_config_class, "with_past"), "OnnxConfigWithPast should have with_past()")

                tokenizer = AutoTokenizer.from_pretrained(model)
                model = model_class(config_class())
                onnx_config = onnx_config_class.with_past(model.config)

                self.assertTrue(hasattr(onnx_config, "use_past"), "OnnxConfigWithPast should have use_past attribute.")
                self.assertTrue(
                    onnx_config.use_past, "OnnxConfigWithPast.use_past should be if called with with_past()"
                )

                with NamedTemporaryFile("w") as output:
                    output = Path(output.name)
                    onnx_inputs, onnx_outputs = export(tokenizer, model, onnx_config, DEFAULT_ONNX_OPSET, output)

                    try:
                        validate_model_outputs(onnx_config, tokenizer, model, output, onnx_outputs, 1e-5)
                    except ValueError as ve:
                        self.fail(f"{name} -> {ve}")