test_onnx_v2.py 10.5 KB
Newer Older
1
2
3
4
5
from pathlib import Path
from tempfile import NamedTemporaryFile
from unittest import TestCase
from unittest.mock import patch

6
from transformers import (  # LongformerConfig,; T5Config,
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
    AlbertConfig,
    AutoTokenizer,
    BartConfig,
    DistilBertConfig,
    GPT2Config,
    RobertaConfig,
    XLMRobertaConfig,
    is_torch_available,
)
from transformers.models.albert import AlbertOnnxConfig
from transformers.models.bart import BartOnnxConfig
from transformers.models.bert.configuration_bert import BertConfig, BertOnnxConfig
from transformers.models.distilbert import DistilBertOnnxConfig

# from transformers.models.longformer import LongformerOnnxConfig
from transformers.models.gpt2 import GPT2OnnxConfig
from transformers.models.roberta import RobertaOnnxConfig
24
25

# from transformers.models.t5 import T5OnnxConfig
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from transformers.models.xlm_roberta import XLMRobertaOnnxConfig
from transformers.onnx import EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, ParameterFormat, validate_model_outputs
from transformers.onnx.config import DEFAULT_ONNX_OPSET, OnnxConfigWithPast
from transformers.onnx.utils import (
    compute_effective_axis_dimension,
    compute_serialized_parameters_size,
    flatten_output_collection_property,
)
from transformers.testing_utils import require_onnx, require_torch, slow


@require_onnx
class OnnxUtilsTestCaseV2(TestCase):
    """
    Cover all the utilities involved to export ONNX models
    """

    def test_compute_effective_axis_dimension(self):
        """
        When exporting ONNX model with dynamic axis (batch or sequence) we set batch_size and/or sequence_length = -1.
        We cannot generate an effective tensor with axis dim == -1, so we trick by using some "fixed" values
        (> 1 to avoid ONNX squeezing the axis).

        This test ensure we are correctly replacing generated batch / sequence tensor with axis > 1
        """

        # Dynamic axis (batch, no token added by the tokenizer)
        self.assertEqual(compute_effective_axis_dimension(-1, fixed_dimension=2, num_token_to_add=0), 2)

        # Static axis (batch, no token added by the tokenizer)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=2, num_token_to_add=0), 2)

        # Dynamic axis (sequence, token added by the tokenizer 2 (no pair))
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)

        # Dynamic axis (sequence, token added by the tokenizer 3 (pair))
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)

    def test_compute_parameters_serialized_size(self):
        """
        This test ensures we compute a "correct" approximation of the underlying storage requirement (size) for all the
        parameters for the specified parameter's dtype.
        """
        self.assertEqual(compute_serialized_parameters_size(2, ParameterFormat.Float), 2 * ParameterFormat.Float.size)

    def test_flatten_output_collection_property(self):
        """
        This test ensures we correctly flatten nested collection such as the one we use when returning past_keys.
        past_keys = Tuple[Tuple]

        ONNX exporter will export nested collections as ${collection_name}.${level_idx_0}.${level_idx_1}...${idx_n}
        """
        self.assertEqual(
            flatten_output_collection_property("past_key", [[0], [1], [2]]),
            {
                "past_key.0": 0,
                "past_key.1": 1,
                "past_key.2": 2,
            },
        )


class OnnxConfigTestCaseV2(TestCase):
    """
    Cover the test for models default.

    Default means no specific features is being enabled on the model.
    """

    @patch.multiple(OnnxConfig, __abstractmethods__=set())
    def test_use_external_data_format(self):
        """
        External data format is required only if the serialized size of the parameters if bigger than 2Gb
        """
        TWO_GB_LIMIT = EXTERNAL_DATA_FORMAT_SIZE_LIMIT

        # No parameters
        self.assertFalse(OnnxConfig.use_external_data_format(0))

        # Some parameters
        self.assertFalse(OnnxConfig.use_external_data_format(1))

        # Almost 2Gb parameters
        self.assertFalse(OnnxConfig.use_external_data_format((TWO_GB_LIMIT - 1) // ParameterFormat.Float.size))

        # Exactly 2Gb parameters
        self.assertTrue(OnnxConfig.use_external_data_format(TWO_GB_LIMIT))

        # More than 2Gb parameters
        self.assertTrue(OnnxConfig.use_external_data_format((TWO_GB_LIMIT + 1) // ParameterFormat.Float.size))


class OnnxConfigWithPastTestCaseV2(TestCase):
    """
    Cover the tests for model which have use_cache feature (i.e. "with_past" for ONNX)
    """

125
126
127
128
129
    SUPPORTED_WITH_PAST_CONFIGS = {
        ("BART", BartConfig),
        ("GPT2", GPT2Config),
        # ("T5", T5Config)
    }
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

    @patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
    def test_use_past(self):
        """
        Ensure the use_past variable is correctly being set
        """
        for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
            with self.subTest(name):
                self.assertFalse(
                    OnnxConfigWithPast.default(config()).use_past, "OnnxConfigWithPast.default() should not use_past"
                )

                self.assertTrue(
                    OnnxConfigWithPast.with_past(config()).use_past, "OnnxConfigWithPast.default() should use_past"
                )

    @patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
    def test_values_override(self):
        """
        Ensure the use_past variable correctly set the `use_cache` value in model's configuration
        """
        for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
            with self.subTest(name):

                # without past
                onnx_config_default = OnnxConfigWithPast.default(config())
                self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
                self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
                self.assertFalse(
                    onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
                )

                # with past
                onnx_config_default = OnnxConfigWithPast.with_past(config())
                self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
                self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
                self.assertTrue(
                    onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
                )


if is_torch_available():
172
    from transformers import (  # T5Model,
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        AlbertModel,
        BartModel,
        BertModel,
        DistilBertModel,
        GPT2Model,
        RobertaModel,
        XLMRobertaModel,
    )

    PYTORCH_EXPORT_DEFAULT_MODELS = {
        ("ALBERT", "albert-base-v2", AlbertModel, AlbertConfig, AlbertOnnxConfig),
        ("BART", "facebook/bart-base", BartModel, BartConfig, BartOnnxConfig),
        ("BERT", "bert-base-cased", BertModel, BertConfig, BertOnnxConfig),
        ("DistilBERT", "distilbert-base-cased", DistilBertModel, DistilBertConfig, DistilBertOnnxConfig),
        ("GPT2", "gpt2", GPT2Model, GPT2Config, GPT2OnnxConfig),
        # ("LongFormer", "longformer-base-4096", LongformerModel, LongformerConfig, LongformerOnnxConfig),
        ("Roberta", "roberta-base", RobertaModel, RobertaConfig, RobertaOnnxConfig),
        ("XLM-Roberta", "roberta-base", XLMRobertaModel, XLMRobertaConfig, XLMRobertaOnnxConfig),
191
        # ("T5", "t5-small", T5Model, T5Config, T5OnnxConfig),
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    }

    PYTORCH_EXPORT_WITH_PAST_MODELS = {
        # ("BART", "facebook/bart-base", BartModel, BartConfig, BartOnnxConfig),
        # ("GPT2", "gpt2", GPT2Model, GPT2Config, GPT2OnnxConfig),
        # ("T5", "t5-small", T5Model, T5Config, T5OnnxConfig)
    }


class OnnxExportTestCaseV2(TestCase):
    """
    Integration tests ensuring supported models are correctly exported
    """

    @slow
    @require_torch
    def test_pytorch_export_default(self):
        from transformers.onnx import export

        for name, model, model_class, config_class, onnx_config_class in PYTORCH_EXPORT_DEFAULT_MODELS:
            with self.subTest(name):
                self.assertTrue(hasattr(onnx_config_class, "default"))

                tokenizer = AutoTokenizer.from_pretrained(model)
                model = model_class(config_class())
                onnx_config = onnx_config_class.default(model.config)

                with NamedTemporaryFile("w") as output:
                    onnx_inputs, onnx_outputs = export(
                        tokenizer, model, onnx_config, DEFAULT_ONNX_OPSET, Path(output.name)
                    )

                    try:
                        validate_model_outputs(onnx_config, tokenizer, model, Path(output.name), onnx_outputs, 1e-5)
                    except ValueError as ve:
                        self.fail(f"{name} -> {ve}")

    @slow
    @require_torch
    def test_pytorch_export_with_past(self):
        from transformers.onnx import export

        for name, model, model_class, config_class, onnx_config_class in PYTORCH_EXPORT_WITH_PAST_MODELS:
            with self.subTest(name):
                self.assertTrue(hasattr(onnx_config_class, "with_past"), "OnnxConfigWithPast should have with_past()")

                tokenizer = AutoTokenizer.from_pretrained(model)
                model = model_class(config_class())
                onnx_config = onnx_config_class.with_past(model.config)

                self.assertTrue(hasattr(onnx_config, "use_past"), "OnnxConfigWithPast should have use_past attribute.")
                self.assertTrue(
                    onnx_config.use_past, "OnnxConfigWithPast.use_past should be if called with with_past()"
                )

                with NamedTemporaryFile("w") as output:
                    output = Path(output.name)
                    onnx_inputs, onnx_outputs = export(tokenizer, model, onnx_config, DEFAULT_ONNX_OPSET, output)

                    try:
                        validate_model_outputs(onnx_config, tokenizer, model, output, onnx_outputs, 1e-5)
                    except ValueError as ve:
                        self.fail(f"{name} -> {ve}")