serialization.mdx 17.5 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

Steven Liu's avatar
Steven Liu committed
13
# Export to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
14

Steven Liu's avatar
Steven Liu committed
15
16
17
18
If you need to deploy 馃 Transformers models in production environments, we recommend
exporting them to a serialized format that can be loaded and executed on specialized
runtimes and hardware. In this guide, we'll show you how to export 馃 Transformers
models to [ONNX (Open Neural Network eXchange)](http://onnx.ai).
Sylvain Gugger's avatar
Sylvain Gugger committed
19

Steven Liu's avatar
Steven Liu committed
20
21
22
23
24
<Tip>

Once exported, a model can be optimized for inference via techniques such as
quantization and pruning. If you are interested in optimizing your models to run with
maximum efficiency, check out the [馃 Optimum
lewtun's avatar
lewtun committed
25
library](https://github.com/huggingface/optimum).
Sylvain Gugger's avatar
Sylvain Gugger committed
26

Steven Liu's avatar
Steven Liu committed
27
</Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
28

Steven Liu's avatar
Steven Liu committed
29
30
31
32
33
ONNX is an open standard that defines a common set of operators and a common file format
to represent deep learning models in a wide variety of frameworks, including PyTorch and
TensorFlow. When a model is exported to the ONNX format, these operators are used to
construct a computational graph (often called an _intermediate representation_) which
represents the flow of data through the neural network.
Sylvain Gugger's avatar
Sylvain Gugger committed
34

Steven Liu's avatar
Steven Liu committed
35
36
37
By exposing a graph with standardized operators and data types, ONNX makes it easy to
switch between frameworks. For example, a model trained in PyTorch can be exported to
ONNX format and then imported in TensorFlow (and vice versa).
Sylvain Gugger's avatar
Sylvain Gugger committed
38

Steven Liu's avatar
Steven Liu committed
39
40
41
42
馃 Transformers provides a [`transformers.onnx`](main_classes/onnx) package that enables
you to convert model checkpoints to an ONNX graph by leveraging configuration objects.
These configuration objects come ready made for a number of model architectures, and are
designed to be easily extendable to other architectures.
Sylvain Gugger's avatar
Sylvain Gugger committed
43

lewtun's avatar
lewtun committed
44
Ready-made configurations include the following architectures:
Sylvain Gugger's avatar
Sylvain Gugger committed
45

46
<!--This table is automatically generated by `make fix-copies`, do not fill manually!-->
Sylvain Gugger's avatar
Sylvain Gugger committed
47
48
49

- ALBERT
- BART
Jim Rohrer's avatar
Jim Rohrer committed
50
- BEiT
Sylvain Gugger's avatar
Sylvain Gugger committed
51
- BERT
52
- BigBird
53
- BigBird-Pegasus
54
55
- Blenderbot
- BlenderbotSmall
56
- BLOOM
Sylvain Gugger's avatar
Sylvain Gugger committed
57
- CamemBERT
58
- CLIP
rooa's avatar
rooa committed
59
- CodeGen
60
- Conditional DETR
61
- ConvBERT
62
- ConvNeXT
63
- Data2VecText
64
- Data2VecVision
65
66
- DeBERTa
- DeBERTa-v2
67
- DeiT
regisss's avatar
regisss committed
68
- DETR
Sylvain Gugger's avatar
Sylvain Gugger committed
69
- DistilBERT
70
- ELECTRA
71
- ERNIE
72
- FlauBERT
Sylvain Gugger's avatar
Sylvain Gugger committed
73
- GPT Neo
74
- GPT-J
75
- GroupViT
76
- I-BERT
77
- ImageGPT
Sylvain Gugger's avatar
Sylvain Gugger committed
78
- LayoutLM
79
- LayoutLMv3
gcheron's avatar
gcheron committed
80
- LeViT
81
- Longformer
Daniel Stancl's avatar
Daniel Stancl committed
82
- LongT5
83
- M2M100
84
- Marian
Sylvain Gugger's avatar
Sylvain Gugger committed
85
- mBART
86
- MobileBERT
87
- MobileViT
88
- MT5
Sylvain Gugger's avatar
Sylvain Gugger committed
89
- OpenAI GPT-2
90
- OWL-ViT
91
- Perceiver
Gunjan Chhablani's avatar
Gunjan Chhablani committed
92
- PLBart
regisss's avatar
regisss committed
93
- ResNet
Sylvain Gugger's avatar
Sylvain Gugger committed
94
- RoBERTa
95
- RoFormer
96
- SegFormer
97
- SqueezeBERT
98
- Swin Transformer
Sylvain Gugger's avatar
Sylvain Gugger committed
99
- T5
100
- Table Transformer
101
- Vision Encoder decoder
lewtun's avatar
lewtun committed
102
- ViT
Ritik Nandwal's avatar
Ritik Nandwal committed
103
- XLM
Sylvain Gugger's avatar
Sylvain Gugger committed
104
- XLM-RoBERTa
105
- XLM-RoBERTa-XL
NielsRogge's avatar
NielsRogge committed
106
- YOLOS
Sylvain Gugger's avatar
Sylvain Gugger committed
107

lewtun's avatar
lewtun committed
108
In the next two sections, we'll show you how to:
Sylvain Gugger's avatar
Sylvain Gugger committed
109

lewtun's avatar
lewtun committed
110
111
* Export a supported model using the `transformers.onnx` package.
* Export a custom model for an unsupported architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
112

Steven Liu's avatar
Steven Liu committed
113
## Exporting a model to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
114

Steven Liu's avatar
Steven Liu committed
115
116
To export a 馃 Transformers model to ONNX, you'll first need to install some extra
dependencies:
Sylvain Gugger's avatar
Sylvain Gugger committed
117

lewtun's avatar
lewtun committed
118
119
120
121
122
```bash
pip install transformers[onnx]
```

The `transformers.onnx` package can then be used as a Python module:
Sylvain Gugger's avatar
Sylvain Gugger committed
123
124
125
126

```bash
python -m transformers.onnx --help

lewtun's avatar
lewtun committed
127
usage: Hugging Face Transformers ONNX exporter [-h] -m MODEL [--feature {causal-lm, ...}] [--opset OPSET] [--atol ATOL] output
Sylvain Gugger's avatar
Sylvain Gugger committed
128
129
130
131
132
133
134

positional arguments:
  output                Path indicating where to store generated ONNX model.

optional arguments:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
lewtun's avatar
lewtun committed
135
136
137
138
139
                        Model ID on huggingface.co or path on disk to load model from.
  --feature {causal-lm, ...}
                        The type of features to export the model with.
  --opset OPSET         ONNX opset version to export the model with.
  --atol ATOL           Absolute difference tolerence when validating the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
140
141
142
143
144
```

Exporting a checkpoint using a ready-made configuration can be done as follows:

```bash
lewtun's avatar
lewtun committed
145
python -m transformers.onnx --model=distilbert-base-uncased onnx/
Sylvain Gugger's avatar
Sylvain Gugger committed
146
147
```

Steven Liu's avatar
Steven Liu committed
148
You should see the following logs:
Sylvain Gugger's avatar
Sylvain Gugger committed
149
150
151

```bash
Validating ONNX model...
152
        -[鉁揮 ONNX model output names match reference model ({'last_hidden_state'})
lewtun's avatar
lewtun committed
153
154
155
156
        - Validating ONNX Model output "last_hidden_state":
                -[鉁揮 (2, 8, 768) matches (2, 8, 768)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
157
158
```

Steven Liu's avatar
Steven Liu committed
159
160
161
This exports an ONNX graph of the checkpoint defined by the `--model` argument. In this
example, it is `distilbert-base-uncased`, but it can be any checkpoint on the Hugging
Face Hub or one that's stored locally.
Sylvain Gugger's avatar
Sylvain Gugger committed
162

lewtun's avatar
lewtun committed
163
The resulting `model.onnx` file can then be run on one of the [many
Steven Liu's avatar
Steven Liu committed
164
165
accelerators](https://onnx.ai/supported-tools.html#deployModel) that support the ONNX
standard. For example, we can load and run the model with [ONNX
lewtun's avatar
lewtun committed
166
Runtime](https://onnxruntime.ai/) as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
167

lewtun's avatar
lewtun committed
168
169
170
171
172
173
174
175
176
177
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession

>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
Sylvain Gugger's avatar
Sylvain Gugger committed
178

Steven Liu's avatar
Steven Liu committed
179
180
The required output names (like `["last_hidden_state"]`) can be obtained by taking a
look at the ONNX configuration of each model. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
181

lewtun's avatar
lewtun committed
182
183
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
184

lewtun's avatar
lewtun committed
185
186
187
188
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
189
190
```

Steven Liu's avatar
Steven Liu committed
191
192
The process is identical for TensorFlow checkpoints on the Hub. For example, we can
export a pure TensorFlow checkpoint from the [Keras
193
194
195
196
197
198
organization](https://huggingface.co/keras-io) as follows:

```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```

Steven Liu's avatar
Steven Liu committed
199
200
201
To export a model that's stored locally, you'll need to have the model's weights and
tokenizer files stored in a directory. For example, we can load and save a checkpoint as
follows:
202

Steven Liu's avatar
Steven Liu committed
203
<frameworkcontent> <pt>
204
205
206
207
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification

>>> # Load tokenizer and PyTorch weights form the Hub
208
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
209
210
211
212
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-pt-checkpoint")
>>> pt_model.save_pretrained("local-pt-checkpoint")
Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
215
216
217
218
219
220
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
221
</pt> <tf>
Sylvain Gugger's avatar
Sylvain Gugger committed
222
```python
223
224
225
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification

>>> # Load tokenizer and TensorFlow weights from the Hub
226
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
227
228
229
230
231
232
233
234
235
236
237
238
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-tf-checkpoint")
>>> tf_model.save_pretrained("local-tf-checkpoint")
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-tf-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
239
</tf> </frameworkcontent>
240

Steven Liu's avatar
Steven Liu committed
241
## Selecting features for different model tasks
lewtun's avatar
lewtun committed
242

Steven Liu's avatar
Steven Liu committed
243
244
245
Each ready-made configuration comes with a set of _features_ that enable you to export
models for different types of tasks. As shown in the table below, each feature is
associated with a different `AutoClass`:
lewtun's avatar
lewtun committed
246
247
248
249
250
251
252
253
254
255
256
257

| Feature                              | Auto Class                           |
| ------------------------------------ | ------------------------------------ |
| `causal-lm`, `causal-lm-with-past`   | `AutoModelForCausalLM`               |
| `default`, `default-with-past`       | `AutoModel`                          |
| `masked-lm`                          | `AutoModelForMaskedLM`               |
| `question-answering`                 | `AutoModelForQuestionAnswering`      |
| `seq2seq-lm`, `seq2seq-lm-with-past` | `AutoModelForSeq2SeqLM`              |
| `sequence-classification`            | `AutoModelForSequenceClassification` |
| `token-classification`               | `AutoModelForTokenClassification`    |

For each configuration, you can find the list of supported features via the
Steven Liu's avatar
Steven Liu committed
258
[`~transformers.onnx.FeaturesManager`]. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
259
260

```python
lewtun's avatar
lewtun committed
261
>>> from transformers.onnx.features import FeaturesManager
Sylvain Gugger's avatar
Sylvain Gugger committed
262

lewtun's avatar
lewtun committed
263
264
265
>>> distilbert_features = list(FeaturesManager.get_supported_features_for_model_type("distilbert").keys())
>>> print(distilbert_features)
["default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "question-answering"]
Sylvain Gugger's avatar
Sylvain Gugger committed
266
267
```

lewtun's avatar
lewtun committed
268
You can then pass one of these features to the `--feature` argument in the
Steven Liu's avatar
Steven Liu committed
269
270
`transformers.onnx` package. For example, to export a text-classification model we can
pick a fine-tuned model from the Hub and run:
Sylvain Gugger's avatar
Sylvain Gugger committed
271

lewtun's avatar
lewtun committed
272
273
274
275
```bash
python -m transformers.onnx --model=distilbert-base-uncased-finetuned-sst-2-english \
                            --feature=sequence-classification onnx/
```
Sylvain Gugger's avatar
Sylvain Gugger committed
276

Steven Liu's avatar
Steven Liu committed
277
This displays the following logs:
lewtun's avatar
lewtun committed
278
279
280

```bash
Validating ONNX model...
281
        -[鉁揮 ONNX model output names match reference model ({'logits'})
lewtun's avatar
lewtun committed
282
283
284
285
        - Validating ONNX Model output "logits":
                -[鉁揮 (2, 2) matches (2, 2)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
286
287
```

Steven Liu's avatar
Steven Liu committed
288
289
290
Notice that in this case, the output names from the fine-tuned model are `logits`
instead of the `last_hidden_state` we saw with the `distilbert-base-uncased` checkpoint
earlier. This is expected since the fine-tuned model has a sequence classification head.
lewtun's avatar
lewtun committed
291
292
293

<Tip>

Steven Liu's avatar
Steven Liu committed
294
295
296
The features that have a `with-past` suffix (like `causal-lm-with-past`) correspond to
model classes with precomputed hidden states (key and values in the attention blocks)
that can be used for fast autoregressive decoding.
lewtun's avatar
lewtun committed
297
298

</Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
299

300
301
302
303
304
305
306
<Tip>

For `VisionEncoderDecoder` type models, the encoder and decoder parts are
exported separately as two ONNX files named `encoder_model.onnx` and `decoder_model.onnx` respectively.

</Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
307

Steven Liu's avatar
Steven Liu committed
308
## Exporting a model for an unsupported architecture
Sylvain Gugger's avatar
Sylvain Gugger committed
309

Steven Liu's avatar
Steven Liu committed
310
311
If you wish to export a model whose architecture is not natively supported by the
library, there are three main steps to follow:
Sylvain Gugger's avatar
Sylvain Gugger committed
312

lewtun's avatar
lewtun committed
313
314
315
1. Implement a custom ONNX configuration.
2. Export the model to ONNX.
3. Validate the outputs of the PyTorch and exported models.
Sylvain Gugger's avatar
Sylvain Gugger committed
316

Steven Liu's avatar
Steven Liu committed
317
318
In this section, we'll look at how DistilBERT was implemented to show what's involved
with each step.
Sylvain Gugger's avatar
Sylvain Gugger committed
319

Steven Liu's avatar
Steven Liu committed
320
### Implementing a custom ONNX configuration
Sylvain Gugger's avatar
Sylvain Gugger committed
321

Steven Liu's avatar
Steven Liu committed
322
323
Let's start with the ONNX configuration object. We provide three abstract classes that
you should inherit from, depending on the type of model architecture you wish to export:
Sylvain Gugger's avatar
Sylvain Gugger committed
324

325
326
327
* Encoder-based models inherit from [`~onnx.config.OnnxConfig`]
* Decoder-based models inherit from [`~onnx.config.OnnxConfigWithPast`]
* Encoder-decoder models inherit from [`~onnx.config.OnnxSeq2SeqConfigWithPast`]
Sylvain Gugger's avatar
Sylvain Gugger committed
328
329
330

<Tip>

lewtun's avatar
lewtun committed
331
332
A good way to implement a custom ONNX configuration is to look at the existing
implementation in the `configuration_<model_name>.py` file of a similar architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
333
334
335

</Tip>

lewtun's avatar
lewtun committed
336
337
Since DistilBERT is an encoder-based model, its configuration inherits from
`OnnxConfig`:
Sylvain Gugger's avatar
Sylvain Gugger committed
338

lewtun's avatar
lewtun committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
```python
>>> from typing import Mapping, OrderedDict
>>> from transformers.onnx import OnnxConfig


>>> class DistilBertOnnxConfig(OnnxConfig):
...     @property
...     def inputs(self) -> Mapping[str, Mapping[int, str]]:
...         return OrderedDict(
...             [
...                 ("input_ids", {0: "batch", 1: "sequence"}),
...                 ("attention_mask", {0: "batch", 1: "sequence"}),
...             ]
...         )
Sylvain Gugger's avatar
Sylvain Gugger committed
353
354
```

Steven Liu's avatar
Steven Liu committed
355
356
357
358
359
Every configuration object must implement the `inputs` property and return a mapping,
where each key corresponds to an expected input, and each value indicates the axis of
that input. For DistilBERT, we can see that two inputs are required: `input_ids` and
`attention_mask`. These inputs have the same shape of `(batch_size, sequence_length)`
which is why we see the same axes used in the configuration.
Sylvain Gugger's avatar
Sylvain Gugger committed
360
361
362

<Tip>

Steven Liu's avatar
Steven Liu committed
363
364
365
366
367
Notice that `inputs` property for `DistilBertOnnxConfig` returns an `OrderedDict`. This
ensures that the inputs are matched with their relative position within the
`PreTrainedModel.forward()` method when tracing the graph. We recommend using an
`OrderedDict` for the `inputs` and `outputs` properties when implementing custom ONNX
configurations.
Sylvain Gugger's avatar
Sylvain Gugger committed
368
369
370

</Tip>

Steven Liu's avatar
Steven Liu committed
371
372
Once you have implemented an ONNX configuration, you can instantiate it by providing the
base model's configuration as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
373

lewtun's avatar
lewtun committed
374
375
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
376

lewtun's avatar
lewtun committed
377
378
379
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config = DistilBertOnnxConfig(config)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
380

Steven Liu's avatar
Steven Liu committed
381
382
The resulting object has several useful properties. For example, you can view the ONNX
operator set that will be used during the export:
Sylvain Gugger's avatar
Sylvain Gugger committed
383

lewtun's avatar
lewtun committed
384
385
386
387
```python
>>> print(onnx_config.default_onnx_opset)
11
```
Sylvain Gugger's avatar
Sylvain Gugger committed
388

lewtun's avatar
lewtun committed
389
You can also view the outputs associated with the model as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
390

lewtun's avatar
lewtun committed
391
392
393
394
```python
>>> print(onnx_config.outputs)
OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
395

Steven Liu's avatar
Steven Liu committed
396
397
398
399
400
401
402
403
Notice that the outputs property follows the same structure as the inputs; it returns an
`OrderedDict` of named outputs and their shapes. The output structure is linked to the
choice of feature that the configuration is initialised with. By default, the ONNX
configuration is initialized with the `default` feature that corresponds to exporting a
model loaded with the `AutoModel` class. If you want to export a model for another task,
just provide a different feature to the `task` argument when you initialize the ONNX
configuration. For example, if we wished to export DistilBERT with a sequence
classification head, we could use:
Sylvain Gugger's avatar
Sylvain Gugger committed
404

lewtun's avatar
lewtun committed
405
406
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
407

lewtun's avatar
lewtun committed
408
409
410
411
412
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config_for_seq_clf = DistilBertOnnxConfig(config, task="sequence-classification")
>>> print(onnx_config_for_seq_clf.outputs)
OrderedDict([('logits', {0: 'batch'})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
413
414
415

<Tip>

Steven Liu's avatar
Steven Liu committed
416
417
418
All of the base properties and methods associated with [`~onnx.config.OnnxConfig`] and
the other configuration classes can be overriden if needed. Check out [`BartOnnxConfig`]
for an advanced example.
Sylvain Gugger's avatar
Sylvain Gugger committed
419
420
421

</Tip>

Steven Liu's avatar
Steven Liu committed
422
### Exporting the model
Sylvain Gugger's avatar
Sylvain Gugger committed
423

Steven Liu's avatar
Steven Liu committed
424
425
426
427
Once you have implemented the ONNX configuration, the next step is to export the model.
Here we can use the `export()` function provided by the `transformers.onnx` package.
This function expects the ONNX configuration, along with the base model and tokenizer,
and the path to save the exported file:
Sylvain Gugger's avatar
Sylvain Gugger committed
428

lewtun's avatar
lewtun committed
429
430
431
432
```python
>>> from pathlib import Path
>>> from transformers.onnx import export
>>> from transformers import AutoTokenizer, AutoModel
Sylvain Gugger's avatar
Sylvain Gugger committed
433

lewtun's avatar
lewtun committed
434
435
436
437
>>> onnx_path = Path("model.onnx")
>>> model_ckpt = "distilbert-base-uncased"
>>> base_model = AutoModel.from_pretrained(model_ckpt)
>>> tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
Sylvain Gugger's avatar
Sylvain Gugger committed
438

lewtun's avatar
lewtun committed
439
440
>>> onnx_inputs, onnx_outputs = export(tokenizer, base_model, onnx_config, onnx_config.default_onnx_opset, onnx_path)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
441

Steven Liu's avatar
Steven Liu committed
442
443
444
The `onnx_inputs` and `onnx_outputs` returned by the `export()` function are lists of
the keys defined in the `inputs` and `outputs` properties of the configuration. Once the
model is exported, you can test that the model is well formed as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
445

lewtun's avatar
lewtun committed
446
447
```python
>>> import onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
448

lewtun's avatar
lewtun committed
449
450
451
>>> onnx_model = onnx.load("model.onnx")
>>> onnx.checker.check_model(onnx_model)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
452
453
454

<Tip>

Steven Liu's avatar
Steven Liu committed
455
456
457
458
459
460
If your model is larger than 2GB, you will see that many additional files are created
during the export. This is _expected_ because ONNX uses [Protocol
Buffers](https://developers.google.com/protocol-buffers/) to store the model and these
have a size limit of 2GB. See the [ONNX
documentation](https://github.com/onnx/onnx/blob/master/docs/ExternalData.md) for
instructions on how to load models with external data.
Sylvain Gugger's avatar
Sylvain Gugger committed
461
462
463

</Tip>

Steven Liu's avatar
Steven Liu committed
464
### Validating the model outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
465

Steven Liu's avatar
Steven Liu committed
466
467
468
The final step is to validate that the outputs from the base and exported model agree
within some absolute tolerance. Here we can use the `validate_model_outputs()` function
provided by the `transformers.onnx` package as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
469

lewtun's avatar
lewtun committed
470
471
```python
>>> from transformers.onnx import validate_model_outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
472

lewtun's avatar
lewtun committed
473
474
475
>>> validate_model_outputs(
...     onnx_config, tokenizer, base_model, onnx_path, onnx_outputs, onnx_config.atol_for_validation
... )
Sylvain Gugger's avatar
Sylvain Gugger committed
476
477
```

Steven Liu's avatar
Steven Liu committed
478
479
480
481
This function uses the [`~transformers.onnx.OnnxConfig.generate_dummy_inputs`] method to
generate inputs for the base and exported model, and the absolute tolerance can be
defined in the configuration. We generally find numerical agreement in the 1e-6 to 1e-4
range, although anything smaller than 1e-3 is likely to be OK.
Sylvain Gugger's avatar
Sylvain Gugger committed
482

Steven Liu's avatar
Steven Liu committed
483
## Contributing a new configuration to 馃 Transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
484

Steven Liu's avatar
Steven Liu committed
485
486
487
We are looking to expand the set of ready-made configurations and welcome contributions
from the community! If you would like to contribute your addition to the library, you
will need to:
Sylvain Gugger's avatar
Sylvain Gugger committed
488

lewtun's avatar
lewtun committed
489
490
* Implement the ONNX configuration in the corresponding `configuration_<model_name>.py`
file
Steven Liu's avatar
Steven Liu committed
491
492
* Include the model architecture and corresponding features in
  [`~onnx.features.FeatureManager`]
493
* Add your model architecture to the tests in `test_onnx_v2.py`
Sylvain Gugger's avatar
Sylvain Gugger committed
494

lewtun's avatar
lewtun committed
495
Check out how the configuration for [IBERT was
Steven Liu's avatar
Steven Liu committed
496
497
contributed](https://github.com/huggingface/transformers/pull/14868/files) to get an
idea of what's involved.