tokenization_bert.py 19.5 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""

thomwolf's avatar
thomwolf committed
17
from __future__ import absolute_import, division, print_function, unicode_literals
18
19

import collections
thomwolf's avatar
thomwolf committed
20
import logging
thomwolf's avatar
thomwolf committed
21
22
23
import os
import unicodedata
from io import open
24

thomwolf's avatar
thomwolf committed
25
from .tokenization_utils import PreTrainedTokenizer
thomwolf's avatar
thomwolf committed
26
27
28

logger = logging.getLogger(__name__)

29
30
31
32
33
VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'}

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
34
35
36
37
38
39
40
41
42
43
44
45
46
47
        'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
        'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
        'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
        'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
        'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
        'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
        'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
        'bert-base-german-cased': "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt",
        'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-vocab.txt",
        'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-vocab.txt",
        'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt",
        'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-vocab.txt",
        'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-vocab.txt",
    }
thomwolf's avatar
thomwolf committed
48
}
49
50

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
51
52
53
54
55
56
57
    'bert-base-uncased': 512,
    'bert-large-uncased': 512,
    'bert-base-cased': 512,
    'bert-large-cased': 512,
    'bert-base-multilingual-uncased': 512,
    'bert-base-multilingual-cased': 512,
    'bert-base-chinese': 512,
58
    'bert-base-german-cased': 512,
59
60
    'bert-large-uncased-whole-word-masking': 512,
    'bert-large-cased-whole-word-masking': 512,
thomwolf's avatar
thomwolf committed
61
62
63
    'bert-large-uncased-whole-word-masking-finetuned-squad': 512,
    'bert-large-cased-whole-word-masking-finetuned-squad': 512,
    'bert-base-cased-finetuned-mrpc': 512,
64
}
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
PRETRAINED_INIT_CONFIGURATION = {
    'bert-base-uncased': {'do_lower_case': True},
    'bert-large-uncased': {'do_lower_case': True},
    'bert-base-cased': {'do_lower_case': False},
    'bert-large-cased': {'do_lower_case': False},
    'bert-base-multilingual-uncased': {'do_lower_case': True},
    'bert-base-multilingual-cased': {'do_lower_case': False},
    'bert-base-chinese': {'do_lower_case': False},
    'bert-base-german-cased': {'do_lower_case': False},
    'bert-large-uncased-whole-word-masking': {'do_lower_case': True},
    'bert-large-cased-whole-word-masking': {'do_lower_case': False},
    'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True},
    'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False},
    'bert-base-cased-finetuned-mrpc': {'do_lower_case': False},
}


83
84
85
def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
thomwolf's avatar
thomwolf committed
86
    with open(vocab_file, "r", encoding="utf-8") as reader:
87
        tokens = reader.readlines()
thomwolf's avatar
thomwolf committed
88
    for index, token in enumerate(tokens):
Yiqing-Zhou's avatar
Yiqing-Zhou committed
89
        token = token.rstrip('\n')
thomwolf's avatar
thomwolf committed
90
        vocab[token] = index
91
92
93
94
    return vocab


def whitespace_tokenize(text):
Yongbo Wang's avatar
typo  
Yongbo Wang committed
95
    """Runs basic whitespace cleaning and splitting on a piece of text."""
96
97
98
99
100
101
102
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


103
class BertTokenizer(PreTrainedTokenizer):
104
105
    r"""
    Constructs a BertTokenizer.
106
    :class:`~pytorch_transformers.BertTokenizer` runs end-to-end tokenization: punctuation splitting + wordpiece
107
108
109
110
111
112
113
114
115
116

    Args:
        vocab_file: Path to a one-wordpiece-per-line vocabulary file
        do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False
        do_basic_tokenize: Whether to do basic tokenization before wordpiece.
        max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the
            minimum of this value (if specified) and the underlying BERT model's sequence length.
        never_split: List of tokens which will never be split during tokenization. Only has an effect when
            do_wordpiece_only=False
    """
117

118
119
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
120
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
121
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
122

123
124
    def __init__(self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None,
                 unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]",
125
                 mask_token="[MASK]", tokenize_chinese_chars=True, **kwargs):
126
127
128
        """Constructs a BertTokenizer.

        Args:
129
130
131
132
133
134
135
136
137
138
139
            **vocab_file**: Path to a one-wordpiece-per-line vocabulary file
            **do_lower_case**: (`optional`) boolean (default True)
                Whether to lower case the input
                Only has an effect when do_basic_tokenize=True
            **do_basic_tokenize**: (`optional`) boolean (default True)
                Whether to do basic tokenization before wordpiece.
            **never_split**: (`optional`) list of string
                List of tokens which will never be split during tokenization.
                Only has an effect when do_basic_tokenize=True
            **tokenize_chinese_chars**: (`optional`) boolean (default True)
                Whether to tokenize Chinese characters.
thomwolf's avatar
typos  
thomwolf committed
140
                This should likely be deactivated for Japanese:
141
                see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328
142
        """
143
144
145
        super(BertTokenizer, self).__init__(unk_token=unk_token, sep_token=sep_token,
                                            pad_token=pad_token, cls_token=cls_token,
                                            mask_token=mask_token, **kwargs)
146
147
148
        self.max_len_single_sentence = self.max_len - 2  # take into account special tokens
        self.max_len_sentences_pair = self.max_len - 3  # take into account special tokens

thomwolf's avatar
thomwolf committed
149
150
151
152
        if not os.path.isfile(vocab_file):
            raise ValueError(
                "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
                "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
153
        self.vocab = load_vocab(vocab_file)
thomwolf's avatar
thomwolf committed
154
155
        self.ids_to_tokens = collections.OrderedDict(
            [(ids, tok) for tok, ids in self.vocab.items()])
156
157
        self.do_basic_tokenize = do_basic_tokenize
        if do_basic_tokenize:
158
159
160
            self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case,
                                                  never_split=never_split,
                                                  tokenize_chinese_chars=tokenize_chinese_chars)
161
        self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
162
163

    @property
164
165
    def vocab_size(self):
        return len(self.vocab)
166

167
    def _tokenize(self, text):
thomwolf's avatar
thomwolf committed
168
        split_tokens = []
169
        if self.do_basic_tokenize:
170
            for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
thomwolf's avatar
thomwolf committed
171
172
                for sub_token in self.wordpiece_tokenizer.tokenize(token):
                    split_tokens.append(sub_token)
173
        else:
thomwolf's avatar
thomwolf committed
174
            split_tokens = self.wordpiece_tokenizer.tokenize(text)
175
176
        return split_tokens

177
178
179
180
181
182
183
184
    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.vocab.get(token, self.vocab.get(self.unk_token))

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        return self.ids_to_tokens.get(index, self.unk_token)

185
186
187
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
        out_string = ' '.join(tokens).replace(' ##', '').strip()
188
189
        return out_string

190
    def add_special_tokens_single_sentence(self, token_ids):
191
192
193
194
        """
        Adds special tokens to the a sequence for sequence classification tasks.
        A BERT sequence has the following format: [CLS] X [SEP]
        """
195
        return [self.cls_token_id] + token_ids + [self.sep_token_id]
196

197
198
199
200
201
    def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
        """
        Adds special tokens to a sequence pair for sequence classification tasks.
        A BERT sequence pair has the following format: [CLS] A [SEP] B [SEP]
        """
202
203
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
204
        return cls + token_ids_0 + sep + token_ids_1 + sep
205

206
    def save_vocabulary(self, vocab_path):
thomwolf's avatar
thomwolf committed
207
        """Save the tokenizer vocabulary to a directory or file."""
208
        index = 0
thomwolf's avatar
thomwolf committed
209
        if os.path.isdir(vocab_path):
210
            vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['vocab_file'])
thomwolf's avatar
thomwolf committed
211
212
        else:
            vocab_file = vocab_path
213
214
215
216
217
218
219
220
        with open(vocab_file, "w", encoding="utf-8") as writer:
            for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive."
                                   " Please check that the vocabulary is not corrupted!".format(vocab_file))
                    index = token_index
                writer.write(token + u'\n')
                index += 1
221
        return (vocab_file,)
222

223
224
225
226

class BasicTokenizer(object):
    """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""

227
228
    def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True):
        """ Constructs a BasicTokenizer.
229
230

        Args:
231
232
233
234
235
236
237
            **do_lower_case**: Whether to lower case the input.
            **never_split**: (`optional`) list of str
                Kept for backward compatibility purposes.
                Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`)
                List of token not to split.
            **tokenize_chinese_chars**: (`optional`) boolean (default True)
                Whether to tokenize Chinese characters.
thomwolf's avatar
typos  
thomwolf committed
238
                This should likely be deactivated for Japanese:
239
                see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328
240
        """
241
242
        if never_split is None:
            never_split = []
243
        self.do_lower_case = do_lower_case
WrRan's avatar
WrRan committed
244
        self.never_split = never_split
245
        self.tokenize_chinese_chars = tokenize_chinese_chars
246

247
248
249
250
251
252
253
254
255
256
    def tokenize(self, text, never_split=None):
        """ Basic Tokenization of a piece of text.
            Split on "white spaces" only, for sub-word tokenization, see WordPieceTokenizer.

        Args:
            **never_split**: (`optional`) list of str
                Kept for backward compatibility purposes.
                Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`)
                List of token not to split.
        """
257
        never_split = self.never_split + (never_split if never_split is not None else [])
258
        text = self._clean_text(text)
259
260
261
262
263
264
        # This was added on November 1st, 2018 for the multilingual and Chinese
        # models. This is also applied to the English models now, but it doesn't
        # matter since the English models were not trained on any Chinese data
        # and generally don't have any Chinese data in them (there are Chinese
        # characters in the vocabulary because Wikipedia does have some Chinese
        # words in the English Wikipedia.).
265
        if self.tokenize_chinese_chars:
thomwolf's avatar
thomwolf committed
266
            text = self._tokenize_chinese_chars(text)
267
268
269
        orig_tokens = whitespace_tokenize(text)
        split_tokens = []
        for token in orig_tokens:
270
            if self.do_lower_case and token not in never_split:
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
                token = token.lower()
                token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """Strips accents from a piece of text."""
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

289
    def _run_split_on_punc(self, text, never_split=None):
290
        """Splits punctuation on a piece of text."""
291
        if never_split is not None and text in never_split:
WrRan's avatar
WrRan committed
292
            return [text]
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        chars = list(text)
        i = 0
        start_new_word = True
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]
310

311
312
313
314
315
316
317
318
319
320
321
322
    def _tokenize_chinese_chars(self, text):
        """Adds whitespace around any CJK character."""
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)
323

324
325
326
327
328
329
330
331
332
333
334
    def _is_chinese_char(self, cp):
        """Checks whether CP is the codepoint of a CJK character."""
        # This defines a "chinese character" as anything in the CJK Unicode block:
        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
        if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
335
336
337
338
339
340
341
                (cp >= 0x3400 and cp <= 0x4DBF) or  #
                (cp >= 0x20000 and cp <= 0x2A6DF) or  #
                (cp >= 0x2A700 and cp <= 0x2B73F) or  #
                (cp >= 0x2B740 and cp <= 0x2B81F) or  #
                (cp >= 0x2B820 and cp <= 0x2CEAF) or
                (cp >= 0xF900 and cp <= 0xFAFF) or  #
                (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
342
            return True
343

344
        return False
345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    def _clean_text(self, text):
        """Performs invalid character removal and whitespace cleanup on text."""
        output = []
        for char in text:
            cp = ord(char)
            if cp == 0 or cp == 0xfffd or _is_control(char):
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)


class WordpieceTokenizer(object):
    """Runs WordPiece tokenization."""

363
    def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        """Tokenizes a piece of text into its word pieces.

        This uses a greedy longest-match-first algorithm to perform tokenization
        using the given vocabulary.

        For example:
          input = "unaffable"
          output = ["un", "##aff", "##able"]

        Args:
          text: A single token or whitespace separated tokens. This should have
Julien Chaumond's avatar
Julien Chaumond committed
380
            already been passed through `BasicTokenizer`.
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

        Returns:
          A list of wordpiece tokens.
        """

        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr
                    if substr in self.vocab:
                        cur_substr = substr
                        break
                    end -= 1
                if cur_substr is None:
                    is_bad = True
                    break
                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens


def _is_whitespace(char):
    """Checks whether `chars` is a whitespace character."""
    # \t, \n, and \r are technically contorl characters but we treat them
    # as whitespace since they are generally considered as such.
    if char == " " or char == "\t" or char == "\n" or char == "\r":
        return True
    cat = unicodedata.category(char)
    if cat == "Zs":
        return True
    return False


def _is_control(char):
    """Checks whether `chars` is a control character."""
    # These are technically control characters but we count them as whitespace
    # characters.
    if char == "\t" or char == "\n" or char == "\r":
        return False
    cat = unicodedata.category(char)
    if cat.startswith("C"):
        return True
    return False


def _is_punctuation(char):
    """Checks whether `chars` is a punctuation character."""
    cp = ord(char)
    # We treat all non-letter/number ASCII as punctuation.
    # Characters such as "^", "$", and "`" are not in the Unicode
    # Punctuation class but we treat them as punctuation anyways, for
    # consistency.
    if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
            (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
        return True
    cat = unicodedata.category(char)
    if cat.startswith("P"):
        return True
    return False