tokenization_bert.py 17.4 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""

thomwolf's avatar
thomwolf committed
17
from __future__ import absolute_import, division, print_function, unicode_literals
18
19

import collections
thomwolf's avatar
thomwolf committed
20
import logging
thomwolf's avatar
thomwolf committed
21
22
23
import os
import unicodedata
from io import open
24

25
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
thomwolf's avatar
thomwolf committed
26
27
28

logger = logging.getLogger(__name__)

29
30
31
32
33
VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'}

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
34
35
36
37
38
39
40
41
42
43
44
45
46
47
        'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
        'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
        'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
        'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
        'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
        'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
        'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
        'bert-base-german-cased': "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt",
        'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-vocab.txt",
        'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-vocab.txt",
        'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt",
        'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-vocab.txt",
        'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-vocab.txt",
    }
thomwolf's avatar
thomwolf committed
48
}
49
50

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
51
52
53
54
55
56
57
    'bert-base-uncased': 512,
    'bert-large-uncased': 512,
    'bert-base-cased': 512,
    'bert-large-cased': 512,
    'bert-base-multilingual-uncased': 512,
    'bert-base-multilingual-cased': 512,
    'bert-base-chinese': 512,
58
    'bert-base-german-cased': 512,
59
60
    'bert-large-uncased-whole-word-masking': 512,
    'bert-large-cased-whole-word-masking': 512,
thomwolf's avatar
thomwolf committed
61
62
63
    'bert-large-uncased-whole-word-masking-finetuned-squad': 512,
    'bert-large-cased-whole-word-masking-finetuned-squad': 512,
    'bert-base-cased-finetuned-mrpc': 512,
64
}
65
66
67
68

def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
thomwolf's avatar
thomwolf committed
69
    with open(vocab_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
70
71
72
73
        tokens = reader.read().splitlines()
    for index, token in enumerate(tokens):
        vocab[token] = index
        index += 1
74
75
76
77
    return vocab


def whitespace_tokenize(text):
Yongbo Wang's avatar
typo  
Yongbo Wang committed
78
    """Runs basic whitespace cleaning and splitting on a piece of text."""
79
80
81
82
83
84
85
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


86
class BertTokenizer(PreTrainedTokenizer):
87
88
89
90
91
92
93
94
95
96
97
98
99
    r"""
    Constructs a BertTokenizer.
    :class:`~pytorch_pretrained_bert.BertTokenizer` runs end-to-end tokenization: punctuation splitting + wordpiece

    Args:
        vocab_file: Path to a one-wordpiece-per-line vocabulary file
        do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False
        do_basic_tokenize: Whether to do basic tokenization before wordpiece.
        max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the
            minimum of this value (if specified) and the underlying BERT model's sequence length.
        never_split: List of tokens which will never be split during tokenization. Only has an effect when
            do_wordpiece_only=False
    """
100

101
102
103
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
104

105
106
107
    def __init__(self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None,
                 unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]",
                 mask_token="[MASK]", **kwargs):
108
109
110
        """Constructs a BertTokenizer.

        Args:
111
112
113
114
115
116
          vocab_file: Path to a one-wordpiece-per-line vocabulary file
          do_lower_case: Whether to lower case the input
                         Only has an effect when do_wordpiece_only=False
          do_basic_tokenize: Whether to do basic tokenization before wordpiece.
          never_split: List of tokens which will never be split during tokenization.
                         Only has an effect when do_wordpiece_only=False
117
        """
118
119
120
        super(BertTokenizer, self).__init__(unk_token=unk_token, sep_token=sep_token,
                                            pad_token=pad_token, cls_token=cls_token,
                                            mask_token=mask_token, **kwargs)
thomwolf's avatar
thomwolf committed
121
122
123
124
        if not os.path.isfile(vocab_file):
            raise ValueError(
                "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
                "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
125
        self.vocab = load_vocab(vocab_file)
thomwolf's avatar
thomwolf committed
126
127
        self.ids_to_tokens = collections.OrderedDict(
            [(ids, tok) for tok, ids in self.vocab.items()])
128
129
130
131
        self.do_basic_tokenize = do_basic_tokenize
        if do_basic_tokenize:
          self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case,
                                                never_split=never_split)
132
        self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
133
134

    @property
135
136
    def vocab_size(self):
        return len(self.vocab)
137

138
    def _tokenize(self, text):
thomwolf's avatar
thomwolf committed
139
        split_tokens = []
140
        if self.do_basic_tokenize:
141
            for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
thomwolf's avatar
thomwolf committed
142
143
                for sub_token in self.wordpiece_tokenizer.tokenize(token):
                    split_tokens.append(sub_token)
144
        else:
thomwolf's avatar
thomwolf committed
145
            split_tokens = self.wordpiece_tokenizer.tokenize(text)
146
147
        return split_tokens

148
149
150
151
152
153
154
155
156
    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.vocab.get(token, self.vocab.get(self.unk_token))

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        return self.ids_to_tokens.get(index, self.unk_token)

    def _convert_ids_to_string(self, tokens_ids):
157
        """Converts a sequence of ids in a string."""
158
        tokens = self.convert_ids_to_tokens(tokens_ids)
159
160
161
        out_string = ''.join(tokens).replace(' ##', '').strip()
        return out_string

162
    def save_vocabulary(self, vocab_path):
thomwolf's avatar
thomwolf committed
163
        """Save the tokenizer vocabulary to a directory or file."""
164
        index = 0
thomwolf's avatar
thomwolf committed
165
        if os.path.isdir(vocab_path):
166
            vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['vocab_file'])
167
168
169
170
171
172
173
174
        with open(vocab_file, "w", encoding="utf-8") as writer:
            for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive."
                                   " Please check that the vocabulary is not corrupted!".format(vocab_file))
                    index = token_index
                writer.write(token + u'\n')
                index += 1
175
        return (vocab_file,)
176

thomwolf's avatar
thomwolf committed
177
    @classmethod
178
179
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
        """ Instantiate a BertTokenizer from pre-trained vocabulary files.
thomwolf's avatar
thomwolf committed
180
        """
181
        if pretrained_model_name_or_path in PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES:
thomwolf's avatar
thomwolf committed
182
183
184
185
186
187
188
189
190
191
            if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True):
                logger.warning("The pre-trained model you are loading is a cased model but you have not set "
                               "`do_lower_case` to False. We are setting `do_lower_case=False` for you but "
                               "you may want to check this behavior.")
                kwargs['do_lower_case'] = False
            elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True):
                logger.warning("The pre-trained model you are loading is an uncased model but you have set "
                               "`do_lower_case` to False. We are setting `do_lower_case=True` for you "
                               "but you may want to check this behavior.")
                kwargs['do_lower_case'] = True
192
193

        return super(BertTokenizer, cls)._from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
194
195
196
197
198


class BasicTokenizer(object):
    """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""

WrRan's avatar
WrRan committed
199
200
    def __init__(self,
                 do_lower_case=True,
201
                 never_split=None):
202
203
204
205
206
        """Constructs a BasicTokenizer.

        Args:
          do_lower_case: Whether to lower case the input.
        """
207
208
        if never_split is None:
            never_split = []
209
        self.do_lower_case = do_lower_case
WrRan's avatar
WrRan committed
210
        self.never_split = never_split
211

thomwolf's avatar
thomwolf committed
212
    def tokenize(self, text, never_split=None, tokenize_chinese_chars=True):
213
        """Tokenizes a piece of text."""
214
        never_split = self.never_split + (never_split if never_split is not None else [])
215
        text = self._clean_text(text)
216
217
218
219
220
221
        # This was added on November 1st, 2018 for the multilingual and Chinese
        # models. This is also applied to the English models now, but it doesn't
        # matter since the English models were not trained on any Chinese data
        # and generally don't have any Chinese data in them (there are Chinese
        # characters in the vocabulary because Wikipedia does have some Chinese
        # words in the English Wikipedia.).
thomwolf's avatar
thomwolf committed
222
223
        if tokenize_chinese_chars:
            text = self._tokenize_chinese_chars(text)
224
225
226
        orig_tokens = whitespace_tokenize(text)
        split_tokens = []
        for token in orig_tokens:
227
            if self.do_lower_case and token not in never_split:
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
                token = token.lower()
                token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """Strips accents from a piece of text."""
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

246
    def _run_split_on_punc(self, text, never_split=None):
247
        """Splits punctuation on a piece of text."""
248
        if never_split is not None and text in never_split:
WrRan's avatar
WrRan committed
249
            return [text]
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        chars = list(text)
        i = 0
        start_new_word = True
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]
267

268
269
270
271
272
273
274
275
276
277
278
279
    def _tokenize_chinese_chars(self, text):
        """Adds whitespace around any CJK character."""
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)
280

281
282
283
284
285
286
287
288
289
290
291
    def _is_chinese_char(self, cp):
        """Checks whether CP is the codepoint of a CJK character."""
        # This defines a "chinese character" as anything in the CJK Unicode block:
        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
        if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
292
293
294
295
296
297
298
                (cp >= 0x3400 and cp <= 0x4DBF) or  #
                (cp >= 0x20000 and cp <= 0x2A6DF) or  #
                (cp >= 0x2A700 and cp <= 0x2B73F) or  #
                (cp >= 0x2B740 and cp <= 0x2B81F) or  #
                (cp >= 0x2B820 and cp <= 0x2CEAF) or
                (cp >= 0xF900 and cp <= 0xFAFF) or  #
                (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
299
            return True
300

301
        return False
302

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    def _clean_text(self, text):
        """Performs invalid character removal and whitespace cleanup on text."""
        output = []
        for char in text:
            cp = ord(char)
            if cp == 0 or cp == 0xfffd or _is_control(char):
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)


class WordpieceTokenizer(object):
    """Runs WordPiece tokenization."""

320
    def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        """Tokenizes a piece of text into its word pieces.

        This uses a greedy longest-match-first algorithm to perform tokenization
        using the given vocabulary.

        For example:
          input = "unaffable"
          output = ["un", "##aff", "##able"]

        Args:
          text: A single token or whitespace separated tokens. This should have
Julien Chaumond's avatar
Julien Chaumond committed
337
            already been passed through `BasicTokenizer`.
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

        Returns:
          A list of wordpiece tokens.
        """

        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr
                    if substr in self.vocab:
                        cur_substr = substr
                        break
                    end -= 1
                if cur_substr is None:
                    is_bad = True
                    break
                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens


def _is_whitespace(char):
    """Checks whether `chars` is a whitespace character."""
    # \t, \n, and \r are technically contorl characters but we treat them
    # as whitespace since they are generally considered as such.
    if char == " " or char == "\t" or char == "\n" or char == "\r":
        return True
    cat = unicodedata.category(char)
    if cat == "Zs":
        return True
    return False


def _is_control(char):
    """Checks whether `chars` is a control character."""
    # These are technically control characters but we count them as whitespace
    # characters.
    if char == "\t" or char == "\n" or char == "\r":
        return False
    cat = unicodedata.category(char)
    if cat.startswith("C"):
        return True
    return False


def _is_punctuation(char):
    """Checks whether `chars` is a punctuation character."""
    cp = ord(char)
    # We treat all non-letter/number ASCII as punctuation.
    # Characters such as "^", "$", and "`" are not in the Unicode
    # Punctuation class but we treat them as punctuation anyways, for
    # consistency.
    if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
            (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
        return True
    cat = unicodedata.category(char)
    if cat.startswith("P"):
        return True
    return False