modeling_xlm.py 45.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLM model.
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import sys
from io import open

import itertools
import numpy as np

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import CrossEntropyLoss, MSELoss

thomwolf's avatar
thomwolf committed
33
from .modeling_utils import (PretrainedConfig, PreTrainedModel, add_start_docstrings,
34
                             prune_linear_layer, SequenceSummary, SQuADHead)
35
36
37

logger = logging.getLogger(__name__)

38
XLM_PRETRAINED_MODEL_ARCHIVE_MAP = {
39
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-pytorch_model.bin",
40
41
42
43
44
    'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-pytorch_model.bin",
    'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-pytorch_model.bin",
    'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-pytorch_model.bin",
    'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-pytorch_model.bin",
    'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-pytorch_model.bin",
45
46
    'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-pytorch_model.bin",
    'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-pytorch_model.bin",
47
48
    'xlm-mlm-17-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-pytorch_model.json",
    'xlm-mlm-100-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-pytorch_model.json",
49
}
50
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
51
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-config.json",
52
    'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-config.json",
thomwolf's avatar
thomwolf committed
53
    'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-config.json",
54
55
56
57
58
    'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-config.json",
    'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-config.json",
    'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-config.json",
    'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-config.json",
    'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-config.json",
59
60
    'xlm-mlm-17-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-config.json",
    'xlm-mlm-100-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-config.json",
61
62
63
64
65
}


class XLMConfig(PretrainedConfig):
    """Configuration class to store the configuration of a `XLMModel`.
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

    Args:
        vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLMModel`.
        d_model: Size of the encoder layers and the pooler layer.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        d_inner: The size of the "intermediate" (i.e., feed-forward)
            layer in the Transformer encoder.
        ff_activation: The non-linear activation function (function or string) in the
            encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        untie_r: untie relative position biases
        attn_type: 'bi' for XLM, 'uni' for Transformer-XL

        dropout: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        dropatt: The dropout ratio for the attention
            probabilities.
        max_position_embeddings: The maximum sequence length that this model might
            ever be used with. Typically set this to something large just in case
            (e.g., 512 or 1024 or 2048).
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        layer_norm_eps: The epsilon used by LayerNorm.

        dropout: float, dropout rate.
        dropatt: float, dropout rate on attention probabilities.
        init: str, the initialization scheme, either "normal" or "uniform".
        init_range: float, initialize the parameters with a uniform distribution
            in [-init_range, init_range]. Only effective when init="uniform".
        init_std: float, initialize the parameters with a normal distribution
            with mean 0 and stddev init_std. Only effective when init="normal".
        mem_len: int, the number of tokens to cache.
        reuse_len: int, the number of tokens in the currect batch to be cached
            and reused in the future.
        bi_data: bool, whether to use bidirectional input pipeline.
            Usually set to True during pretraining and False during finetuning.
        clamp_len: int, clamp all relative distances larger than clamp_len.
            -1 means no clamping.
        same_length: bool, whether to use the same attention length for each token.
106
    """
107
    pretrained_config_archive_map = XLM_PRETRAINED_CONFIG_ARCHIVE_MAP
108
109

    def __init__(self,
thomwolf's avatar
thomwolf committed
110
                 vocab_size_or_config_json_file=30145,
thomwolf's avatar
xlm  
thomwolf committed
111
112
113
114
115
116
117
                 emb_dim=2048,
                 n_layers=12,
                 n_heads=16,
                 dropout=0.1,
                 attention_dropout=0.1,
                 gelu_activation=True,
                 sinusoidal_embeddings=False,
thomwolf's avatar
thomwolf committed
118
                 causal=False,
thomwolf's avatar
xlm  
thomwolf committed
119
120
                 asm=False,
                 n_langs=1,
Shijie Wu's avatar
Shijie Wu committed
121
                 use_lang_emb=True,
122
                 max_position_embeddings=512,
thomwolf's avatar
thomwolf committed
123
                 embed_init_std=2048 ** -0.5,
thomwolf's avatar
thomwolf committed
124
                 layer_norm_eps=1e-12,
thomwolf's avatar
thomwolf committed
125
126
127
128
129
130
131
                 init_std=0.02,
                 bos_index=0,
                 eos_index=1,
                 pad_index=2,
                 unk_index=3,
                 mask_index=5,
                 is_encoder=True,
thomwolf's avatar
thomwolf committed
132
133
134

                 finetuning_task=None,
                 num_labels=2,
135
                 summary_type='first',
thomwolf's avatar
thomwolf committed
136
                 summary_use_proj=True,
137
138
139
                 summary_activation=None,
                 summary_proj_to_labels=True,
                 summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
140
141
                 start_n_top=5,
                 end_n_top=5,
thomwolf's avatar
xlm  
thomwolf committed
142
                 **kwargs):
143
144
        """Constructs XLMConfig.
        """
thomwolf's avatar
xlm  
thomwolf committed
145
146
        super(XLMConfig, self).__init__(**kwargs)

147
148
149
150
151
152
153
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
xlm  
thomwolf committed
154
155
156
157
158
159
160
161
            self.n_words = vocab_size_or_config_json_file
            self.emb_dim = emb_dim
            self.n_layers = n_layers
            self.n_heads = n_heads
            self.dropout = dropout
            self.attention_dropout = attention_dropout
            self.gelu_activation = gelu_activation
            self.sinusoidal_embeddings = sinusoidal_embeddings
thomwolf's avatar
thomwolf committed
162
            self.causal = causal
thomwolf's avatar
xlm  
thomwolf committed
163
164
            self.asm = asm
            self.n_langs = n_langs
Shijie Wu's avatar
Shijie Wu committed
165
            self.use_lang_emb = use_lang_emb
thomwolf's avatar
thomwolf committed
166
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
167
168
169
170
171
172
            self.bos_index = bos_index
            self.eos_index = eos_index
            self.pad_index = pad_index
            self.unk_index = unk_index
            self.mask_index = mask_index
            self.is_encoder = is_encoder
173
            self.max_position_embeddings = max_position_embeddings
thomwolf's avatar
thomwolf committed
174
175
            self.embed_init_std = embed_init_std
            self.init_std = init_std
thomwolf's avatar
thomwolf committed
176
177
178
179
180
            self.finetuning_task = finetuning_task
            self.num_labels = num_labels
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
181
182
            self.summary_proj_to_labels = summary_proj_to_labels
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
183
184
            self.start_n_top = start_n_top
            self.end_n_top = end_n_top
185
186
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
VictorSanh's avatar
VictorSanh committed
187
                             " or the path to a pretrained model config file (str)")
188

thomwolf's avatar
xlm  
thomwolf committed
189
    @property
thomwolf's avatar
thomwolf committed
190
191
    def vocab_size(self):
        return self.n_words
thomwolf's avatar
xlm  
thomwolf committed
192

thomwolf's avatar
thomwolf committed
193
194
195
196
    @vocab_size.setter
    def vocab_size(self, value):
        self.n_words = value

thomwolf's avatar
xlm  
thomwolf committed
197
198
199
200
201
202
203
204
205
206
207
208
    @property
    def hidden_size(self):
        return self.emb_dim

    @property
    def num_attention_heads(self):
        return self.n_heads

    @property
    def num_hidden_layers(self):
        return self.n_layers

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()
    out.requires_grad = False


def gelu(x):
    """
    GELU activation
    https://arxiv.org/abs/1606.08415
    https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/model_pytorch.py#L14
thomwolf's avatar
thomwolf committed
226
    https://github.com/huggingface/pytorch-transformers/blob/master/modeling.py
227
228
229
230
231
    """
    # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))


thomwolf's avatar
thomwolf committed
232
def get_masks(slen, lengths, causal, padding_mask=None):
233
234
235
236
    """
    Generate hidden states mask, and optionally an attention mask.
    """
    bs = lengths.size(0)
thomwolf's avatar
thomwolf committed
237
238
239
240
241
242
    if padding_mask is not None:
        mask = padding_mask
    else:
        assert lengths.max().item() <= slen
        alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
        mask = alen < lengths[:, None]
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

    # attention mask is the same as mask, or triangular inferior attention (causal)
    if causal:
        attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
    else:
        attn_mask = mask

    # sanity check
    assert mask.size() == (bs, slen)
    assert causal is False or attn_mask.size() == (bs, slen, slen)

    return mask, attn_mask


class MultiHeadAttention(nn.Module):

    NEW_ID = itertools.count()

thomwolf's avatar
thomwolf committed
261
    def __init__(self, n_heads, dim, config):
thomwolf's avatar
thomwolf committed
262
        super(MultiHeadAttention, self).__init__()
263
        self.layer_id = next(MultiHeadAttention.NEW_ID)
thomwolf's avatar
thomwolf committed
264
        self.output_attentions = config.output_attentions
265
266
        self.dim = dim
        self.n_heads = n_heads
thomwolf's avatar
thomwolf committed
267
        self.dropout = config.attention_dropout
268
269
        assert self.dim % self.n_heads == 0

thomwolf's avatar
thomwolf committed
270
271
272
273
        self.q_lin = nn.Linear(dim, dim)
        self.k_lin = nn.Linear(dim, dim)
        self.v_lin = nn.Linear(dim, dim)
        self.out_lin = nn.Linear(dim, dim)
LysandreJik's avatar
LysandreJik committed
274
        self.pruned_heads = []
275

thomwolf's avatar
thomwolf committed
276
277
278
279
280
281
    def prune_heads(self, heads):
        attention_head_size = self.dim // self.n_heads
        if len(heads) == 0:
            return
        mask = torch.ones(self.n_heads, attention_head_size)
        for head in heads:
LysandreJik's avatar
LysandreJik committed
282
            head -= len(list(filter(lambda h: h < head, self.pruned_heads)))
thomwolf's avatar
thomwolf committed
283
284
285
286
287
288
289
290
291
292
293
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.q_lin = prune_linear_layer(self.q_lin, index)
        self.k_lin = prune_linear_layer(self.k_lin, index)
        self.v_lin = prune_linear_layer(self.v_lin, index)
        self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.dim = attention_head_size * self.n_heads
LysandreJik's avatar
LysandreJik committed
294
        self.pruned_heads.extend(heads)
thomwolf's avatar
thomwolf committed
295

thomwolf's avatar
thomwolf committed
296
    def forward(self, input, mask, kv=None, cache=None, head_mask=None):
297
298
299
300
301
302
303
304
305
306
        """
        Self-attention (if kv is None) or attention over source sentence (provided by kv).
        """
        # Input is (bs, qlen, dim)
        # Mask is (bs, klen) (non-causal) or (bs, klen, klen)
        bs, qlen, dim = input.size()
        if kv is None:
            klen = qlen if cache is None else cache['slen'] + qlen
        else:
            klen = kv.size(1)
thomwolf's avatar
thomwolf committed
307
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
308
        n_heads = self.n_heads
thomwolf's avatar
thomwolf committed
309
        dim_per_head = self.dim // n_heads
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)

        def shape(x):
            """  projection """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """  compute context """
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)

        q = shape(self.q_lin(input))                                          # (bs, n_heads, qlen, dim_per_head)
        if kv is None:
            k = shape(self.k_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
        elif cache is None or self.layer_id not in cache:
            k = v = kv
            k = shape(self.k_lin(k))                                          # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(v))                                          # (bs, n_heads, qlen, dim_per_head)

        if cache is not None:
            if self.layer_id in cache:
                if kv is None:
                    k_, v_ = cache[self.layer_id]
                    k = torch.cat([k_, k], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                    v = torch.cat([v_, v], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                else:
                    k, v = cache[self.layer_id]
            cache[self.layer_id] = (k, v)

        q = q / math.sqrt(dim_per_head)                                       # (bs, n_heads, qlen, dim_per_head)
        scores = torch.matmul(q, k.transpose(2, 3))                           # (bs, n_heads, qlen, klen)
        mask = (mask == 0).view(mask_reshape).expand_as(scores)               # (bs, n_heads, qlen, klen)
        scores.masked_fill_(mask, -float('inf'))                              # (bs, n_heads, qlen, klen)

        weights = F.softmax(scores.float(), dim=-1).type_as(scores)           # (bs, n_heads, qlen, klen)
        weights = F.dropout(weights, p=self.dropout, training=self.training)  # (bs, n_heads, qlen, klen)
thomwolf's avatar
thomwolf committed
346
347
348
349
350

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

351
352
353
        context = torch.matmul(weights, v)                                    # (bs, n_heads, qlen, dim_per_head)
        context = unshape(context)                                            # (bs, qlen, dim)

thomwolf's avatar
xlm  
thomwolf committed
354
355
        outputs = (self.out_lin(context),)
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
356
            outputs = outputs + (weights,)
thomwolf's avatar
xlm  
thomwolf committed
357
        return outputs
358
359
360
361


class TransformerFFN(nn.Module):

thomwolf's avatar
thomwolf committed
362
    def __init__(self, in_dim, dim_hidden, out_dim, config):
thomwolf's avatar
thomwolf committed
363
        super(TransformerFFN, self).__init__()
thomwolf's avatar
thomwolf committed
364
        self.dropout = config.dropout
thomwolf's avatar
thomwolf committed
365
366
        self.lin1 = nn.Linear(in_dim, dim_hidden)
        self.lin2 = nn.Linear(dim_hidden, out_dim)
thomwolf's avatar
thomwolf committed
367
        self.act = gelu if config.gelu_activation else F.relu
368
369
370
371
372
373
374
375
376

    def forward(self, input):
        x = self.lin1(input)
        x = self.act(x)
        x = self.lin2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        return x


377
class XLMPreTrainedModel(PreTrainedModel):
378
379
380
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
381
    config_class = XLMConfig
382
    pretrained_model_archive_map = XLM_PRETRAINED_MODEL_ARCHIVE_MAP
383
    load_tf_weights = None
thomwolf's avatar
thomwolf committed
384
    base_model_prefix = "transformer"
385
386
387

    def __init__(self, *inputs, **kwargs):
        super(XLMPreTrainedModel, self).__init__(*inputs, **kwargs)
388
389

    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
390
391
392
393
394
395
396
397
398
        """ Initialize the weights. """
        if isinstance(module, nn.Embedding):
            if self.config is not None and self.config.embed_init_std is not None:
                nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std)
        if isinstance(module, nn.Linear):
            if self.config is not None and self.config.init_std is not None:
                nn.init.normal_(module.weight, mean=0, std=self.config.init_std)
                if hasattr(module, 'bias') and module.bias is not None:
                    nn.init.constant_(module.bias, 0.)
thomwolf's avatar
thomwolf committed
399
        if isinstance(module, nn.LayerNorm):
400
401
402
403
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


thomwolf's avatar
thomwolf committed
404
405
406
XLM_START_DOCSTRING = r"""    The XLM model was proposed in
    `Cross-lingual Language Model Pretraining`_
    by Guillaume Lample*, Alexis Conneau*. It's a transformer pre-trained using one of the following objectives:
407

thomwolf's avatar
thomwolf committed
408
409
410
        - a causal language modeling (CLM) objective (next token prediction),
        - a masked language modeling (MLM) objective (Bert-like), or
        - a Translation Language Modeling (TLM) object (extension of Bert's MLM to multiple language inputs)
thomwolf's avatar
thomwolf committed
411

thomwolf's avatar
thomwolf committed
412
    Original code can be found `here`_.
thomwolf's avatar
thomwolf committed
413

thomwolf's avatar
thomwolf committed
414
415
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
thomwolf's avatar
thomwolf committed
416

thomwolf's avatar
thomwolf committed
417
418
    .. _`Cross-lingual Language Model Pretraining`:
        https://arxiv.org/abs/1901.07291
thomwolf's avatar
thomwolf committed
419

thomwolf's avatar
thomwolf committed
420
421
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
thomwolf's avatar
thomwolf committed
422

thomwolf's avatar
thomwolf committed
423
424
425
426
427
    .. _`here`:
        https://github.com/facebookresearch/XLM

    Parameters:
        config (:class:`~pytorch_transformers.XLMConfig`): Model configuration class with all the parameters of the model.
428
429
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
430
"""
431

thomwolf's avatar
thomwolf committed
432
433
434
435
XLM_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
436
437
438
439

            XLM is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.

thomwolf's avatar
thomwolf committed
440
441
442
443
444
            Indices can be obtained using :class:`pytorch_transformers.XLMTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
LysandreJik's avatar
LysandreJik committed
445
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
446
447
448
449
450
451
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **langs**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens to be used to indicate the language of each token in the input.
thomwolf's avatar
thomwolf committed
452
453
454
455
            Indices are languages ids which can be obtained from the language names by using two conversion mappings
            provided in the configuration of the model (only provided for multilingual models).
            More precisely, the `language name -> language id` mapping is in `model.config.lang2id` (dict str -> int) and
            the `language id -> language name` mapping is `model.config.id2lang` (dict int -> str).
thomwolf's avatar
thomwolf committed
456
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
457
458
459
460
461
462
463
464
465
466
467
468
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **lengths**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Length of each sentence that can be used to avoid performing attention on padding token indices.
            You can also use `attention_mask` for the same result (see above), kept here for compatbility.
            Indices selected in ``[0, ..., input_ids.size(-1)]``:
        **cache**:
            dictionary with ``torch.FloatTensor`` that contains pre-computed
            hidden-states (key and values in the attention blocks) as computed by the model
            (see `cache` output below). Can be used to speed up sequential decoding.
            The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
thomwolf's avatar
thomwolf committed
469
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare XLM Model transformer outputing raw hidden-states without any specific head on top.",
                      XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
class XLMModel(XLMPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
486
487
488
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
489
490
491

    Examples::

wangfei's avatar
wangfei committed
492
493
494
495
496
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMModel.from_pretrained('xlm-mlm-en-2048')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
497
498

    """
499
    ATTRIBUTES = ['encoder', 'eos_index', 'pad_index',  # 'with_output', 
Shijie Wu's avatar
Shijie Wu committed
500
                  'n_langs', 'use_lang_emb', 'n_words', 'dim', 'n_layers', 'n_heads', 
501
502
503
504
                  'hidden_dim', 'dropout', 'attention_dropout', 'asm',
                  'asm_cutoffs', 'asm_div_value']

    def __init__(self, config):  #, dico, is_encoder, with_output):
thomwolf's avatar
xlm  
thomwolf committed
505
506
507
        super(XLMModel, self).__init__(config)
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
508
509

        # encoder / decoder, output layer
thomwolf's avatar
thomwolf committed
510
511
512
513
        self.is_encoder = config.is_encoder
        self.is_decoder = not config.is_encoder
        if self.is_decoder:
            raise NotImplementedError("Currently XLM can only be used as an encoder")
514
        # self.with_output = with_output
thomwolf's avatar
xlm  
thomwolf committed
515
        self.causal = config.causal
516
517

        # dictionary / languages
thomwolf's avatar
xlm  
thomwolf committed
518
        self.n_langs = config.n_langs
Shijie Wu's avatar
Shijie Wu committed
519
        self.use_lang_emb = config.use_lang_emb
thomwolf's avatar
xlm  
thomwolf committed
520
521
522
        self.n_words = config.n_words
        self.eos_index = config.eos_index
        self.pad_index = config.pad_index
523
        # self.dico = dico
thomwolf's avatar
thomwolf committed
524
525
        # self.id2lang = config.id2lang
        # self.lang2id = config.lang2id
526
        # assert len(self.dico) == self.n_words
thomwolf's avatar
thomwolf committed
527
        # assert len(self.id2lang) == len(self.lang2id) == self.n_langs
528
529

        # model parameters
thomwolf's avatar
xlm  
thomwolf committed
530
        self.dim = config.emb_dim       # 512 by default
531
        self.hidden_dim = self.dim * 4  # 2048 by default
thomwolf's avatar
xlm  
thomwolf committed
532
533
534
535
        self.n_heads = config.n_heads   # 8 by default
        self.n_layers = config.n_layers
        self.dropout = config.dropout
        self.attention_dropout = config.attention_dropout
536
537
538
        assert self.dim % self.n_heads == 0, 'transformer dim must be a multiple of n_heads'

        # embeddings
thomwolf's avatar
thomwolf committed
539
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
thomwolf's avatar
xlm  
thomwolf committed
540
541
        if config.sinusoidal_embeddings:
            create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
Shijie Wu's avatar
Shijie Wu committed
542
        if config.n_langs > 1 and config.use_lang_emb:
thomwolf's avatar
thomwolf committed
543
544
545
            self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
        self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
        self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps)
546
547
548
549
550
551

        # transformer layers
        self.attentions = nn.ModuleList()
        self.layer_norm1 = nn.ModuleList()
        self.ffns = nn.ModuleList()
        self.layer_norm2 = nn.ModuleList()
thomwolf's avatar
thomwolf committed
552
553
554
        # if self.is_decoder:
        #     self.layer_norm15 = nn.ModuleList()
        #     self.encoder_attn = nn.ModuleList()
555
556

        for _ in range(self.n_layers):
thomwolf's avatar
thomwolf committed
557
            self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config))
thomwolf's avatar
thomwolf committed
558
            self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
thomwolf's avatar
thomwolf committed
559
            # if self.is_decoder:
thomwolf's avatar
thomwolf committed
560
            #     self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
thomwolf's avatar
thomwolf committed
561
562
            #     self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
            self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config))
thomwolf's avatar
thomwolf committed
563
564
            self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))

LysandreJik's avatar
LysandreJik committed
565
566
        if hasattr(config, "pruned_heads"):
            pruned_heads = config.pruned_heads.copy().items()
567
            config.pruned_heads = {}
LysandreJik's avatar
LysandreJik committed
568
569
570
571
            for layer, heads in pruned_heads:
                if self.attentions[int(layer)].n_heads == config.n_heads:
                    self.prune_heads({int(layer): list(map(int, heads))})

thomwolf's avatar
thomwolf committed
572
        self.apply(self.init_weights)
573

thomwolf's avatar
thomwolf committed
574
575
    def _resize_token_embeddings(self, new_num_tokens):
        self.embeddings = self._get_resized_embeddings(self.embeddings, new_num_tokens)
thomwolf's avatar
thomwolf committed
576
        return self.embeddings
thomwolf's avatar
thomwolf committed
577

thomwolf's avatar
thomwolf committed
578
579
580
581
582
583
584
585
    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.attentions[layer].prune_heads(heads)

thomwolf's avatar
thomwolf committed
586
    def forward(self, input_ids, lengths=None, position_ids=None, langs=None,
thomwolf's avatar
thomwolf committed
587
588
                token_type_ids=None, attention_mask=None, cache=None, head_mask=None):  # src_enc=None, src_len=None, 
        if lengths is None:
thomwolf's avatar
thomwolf committed
589
            lengths = (input_ids != self.pad_index).sum(dim=1).long()
thomwolf's avatar
xlm  
thomwolf committed
590
        # mask = input_ids != self.pad_index
591
592

        # check inputs
thomwolf's avatar
xlm  
thomwolf committed
593
        bs, slen = input_ids.size()
594
595
        assert lengths.size(0) == bs
        assert lengths.max().item() <= slen
thomwolf's avatar
xlm  
thomwolf committed
596
        # input_ids = input_ids.transpose(0, 1)  # batch size as dimension 0
thomwolf's avatar
thomwolf committed
597
598
599
600
        # assert (src_enc is None) == (src_len is None)
        # if src_enc is not None:
        #     assert self.is_decoder
        #     assert src_enc.size(0) == bs
601
602

        # generate masks
thomwolf's avatar
thomwolf committed
603
        mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
thomwolf's avatar
thomwolf committed
604
605
        # if self.is_decoder and src_enc is not None:
        #     src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
606

thomwolf's avatar
thomwolf committed
607
608
609
610
        # position_ids
        if position_ids is None:
            position_ids = input_ids.new((slen,)).long()
            position_ids = torch.arange(slen, out=position_ids).unsqueeze(0)
611
        else:
thomwolf's avatar
thomwolf committed
612
613
            assert position_ids.size() == (bs, slen)  # (slen, bs)
            # position_ids = position_ids.transpose(0, 1)
614
615
616

        # langs
        if langs is not None:
thomwolf's avatar
thomwolf committed
617
618
            assert langs.size() == (bs, slen)  # (slen, bs)
            # langs = langs.transpose(0, 1)
619

thomwolf's avatar
thomwolf committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.n_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.n_layers

635
636
637
        # do not recompute cached elements
        if cache is not None:
            _slen = slen - cache['slen']
thomwolf's avatar
xlm  
thomwolf committed
638
            input_ids = input_ids[:, -_slen:]
thomwolf's avatar
thomwolf committed
639
            position_ids = position_ids[:, -_slen:]
640
641
642
643
644
645
            if langs is not None:
                langs = langs[:, -_slen:]
            mask = mask[:, -_slen:]
            attn_mask = attn_mask[:, -_slen:]

        # embeddings
thomwolf's avatar
xlm  
thomwolf committed
646
        tensor = self.embeddings(input_ids)
thomwolf's avatar
thomwolf committed
647
        tensor = tensor + self.position_embeddings(position_ids).expand_as(tensor)
Shijie Wu's avatar
Shijie Wu committed
648
        if langs is not None and self.use_lang_emb:
649
            tensor = tensor + self.lang_embeddings(langs)
thomwolf's avatar
thomwolf committed
650
651
        if token_type_ids is not None:
            tensor = tensor + self.embeddings(token_type_ids)
652
653
654
655
656
        tensor = self.layer_norm_emb(tensor)
        tensor = F.dropout(tensor, p=self.dropout, training=self.training)
        tensor *= mask.unsqueeze(-1).to(tensor.dtype)

        # transformer layers
thomwolf's avatar
thomwolf committed
657
658
        hidden_states = ()
        attentions = ()
659
        for i in range(self.n_layers):
thomwolf's avatar
thomwolf committed
660
            if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
661
                hidden_states = hidden_states + (tensor,)
662
663

            # self attention
thomwolf's avatar
thomwolf committed
664
665
666
            attn_outputs = self.attentions[i](tensor, attn_mask, cache=cache, head_mask=head_mask[i])
            attn = attn_outputs[0]
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
667
                attentions = attentions + (attn_outputs[1],)
668
669
670
671
672
            attn = F.dropout(attn, p=self.dropout, training=self.training)
            tensor = tensor + attn
            tensor = self.layer_norm1[i](tensor)

            # encoder attention (for decoder only)
thomwolf's avatar
thomwolf committed
673
674
675
676
677
            # if self.is_decoder and src_enc is not None:
            #     attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
            #     attn = F.dropout(attn, p=self.dropout, training=self.training)
            #     tensor = tensor + attn
            #     tensor = self.layer_norm15[i](tensor)
678
679
680
681
682
683

            # FFN
            tensor = tensor + self.ffns[i](tensor)
            tensor = self.layer_norm2[i](tensor)
            tensor *= mask.unsqueeze(-1).to(tensor.dtype)

thomwolf's avatar
thomwolf committed
684
685
        # Add last hidden state
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
686
            hidden_states = hidden_states + (tensor,)
thomwolf's avatar
thomwolf committed
687

688
689
690
691
692
        # update cache length
        if cache is not None:
            cache['slen'] += tensor.size(1)

        # move back sequence length to dimension 0
thomwolf's avatar
thomwolf committed
693
        # tensor = tensor.transpose(0, 1)
694

thomwolf's avatar
thomwolf committed
695
        outputs = (tensor,)
696
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
697
            outputs = outputs + (hidden_states,)
thomwolf's avatar
thomwolf committed
698
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
699
            outputs = outputs + (attentions,)
thomwolf's avatar
thomwolf committed
700
        return outputs  # outputs, (hidden_states), (attentions)
701
702
703
704
705
706


class XLMPredLayer(nn.Module):
    """
    Prediction layer (cross_entropy or adaptive_softmax).
    """
thomwolf's avatar
xlm  
thomwolf committed
707
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
708
        super(XLMPredLayer, self).__init__()
thomwolf's avatar
xlm  
thomwolf committed
709
710
711
712
        self.asm = config.asm
        self.n_words = config.n_words
        self.pad_index = config.pad_index
        dim = config.emb_dim
713

thomwolf's avatar
xlm  
thomwolf committed
714
        if config.asm is False:
thomwolf's avatar
thomwolf committed
715
            self.proj = nn.Linear(dim, config.n_words, bias=True)
716
717
718
        else:
            self.proj = nn.AdaptiveLogSoftmaxWithLoss(
                in_features=dim,
thomwolf's avatar
xlm  
thomwolf committed
719
720
721
                n_classes=config.n_words,
                cutoffs=config.asm_cutoffs,
                div_value=config.asm_div_value,
722
723
724
                head_bias=True,  # default is False
            )

thomwolf's avatar
thomwolf committed
725
726
    def forward(self, x, y=None):
        """ Compute the loss, and optionally the scores.
727
        """
thomwolf's avatar
thomwolf committed
728
        outputs = ()
729
730
        if self.asm is False:
            scores = self.proj(x).view(-1, self.n_words)
thomwolf's avatar
thomwolf committed
731
732
733
734
            outputs = (scores,) + outputs
            if y is not None:
                loss = F.cross_entropy(scores, y, reduction='elementwise_mean')
                outputs = (loss,) + outputs
735
        else:
thomwolf's avatar
thomwolf committed
736
737
738
739
740
            scores = self.proj.log_prob(x)
            outputs = (scores,) + outputs
            if y is not None:
                _, loss = self.proj(x, y)
                outputs = (loss,) + outputs
741

thomwolf's avatar
thomwolf committed
742
        return outputs
743

thomwolf's avatar
thomwolf committed
744

thomwolf's avatar
thomwolf committed
745
746
747
@add_start_docstrings("""The XLM Model transformer with a language modeling head on top
    (linear layer with weights tied to the input embeddings). """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
748
class XLMWithLMHeadModel(XLMPreTrainedModel):
thomwolf's avatar
thomwolf committed
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
766
767
768
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
769
770
771

    Examples::

wangfei's avatar
wangfei committed
772
773
774
775
776
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
777

thomwolf's avatar
xlm  
thomwolf committed
778
779
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
780
        super(XLMWithLMHeadModel, self).__init__(config)
thomwolf's avatar
xlm  
thomwolf committed
781
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
782
        self.pred_layer = XLMPredLayer(config)
783
784
785
786
787
788
789

        self.apply(self.init_weights)
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the embeddings
        """
thomwolf's avatar
thomwolf committed
790
        self._tie_or_clone_weights(self.pred_layer.proj, self.transformer.embeddings)
791

thomwolf's avatar
thomwolf committed
792
    def forward(self, input_ids, lengths=None, position_ids=None, langs=None, token_type_ids=None,
thomwolf's avatar
thomwolf committed
793
                attention_mask=None, cache=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
794
795
796
        transformer_outputs = self.transformer(input_ids, lengths=lengths, position_ids=position_ids,
                                               token_type_ids=token_type_ids, langs=langs,
                                               attention_mask=attention_mask, cache=cache, head_mask=head_mask)
797

798
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
799
800
        outputs = self.pred_layer(output, labels)
        outputs = outputs + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
801

802
        return outputs
803
804


thomwolf's avatar
thomwolf committed
805
806
807
@add_start_docstrings("""XLM Model with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks. """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
808
class XLMForSequenceClassification(XLMPreTrainedModel):
thomwolf's avatar
thomwolf committed
809
810
811
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
LysandreJik's avatar
LysandreJik committed
812
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
813
814
815
816
817
818
819
820
821
822
823
824
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
825
826
827
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
828
829
830

    Examples::

wangfei's avatar
wangfei committed
831
832
833
834
835
836
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]
837

838
    """
thomwolf's avatar
xlm  
thomwolf committed
839
    def __init__(self, config):
840
        super(XLMForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
841
        self.num_labels = config.num_labels
842

thomwolf's avatar
xlm  
thomwolf committed
843
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
844
        self.sequence_summary = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
845

846
847
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
848
    def forward(self, input_ids, lengths=None, position_ids=None, langs=None, token_type_ids=None,
thomwolf's avatar
thomwolf committed
849
                attention_mask=None, cache=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
850
851
852
        transformer_outputs = self.transformer(input_ids, lengths=lengths, position_ids=position_ids,
                                               token_type_ids=token_type_ids, langs=langs,
                                               attention_mask=attention_mask, cache=cache, head_mask=head_mask)
853

854
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
855
        logits = self.sequence_summary(output)
856

thomwolf's avatar
thomwolf committed
857
        outputs = (logits,) + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
858

859
860
861
862
863
864
865
866
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
thomwolf's avatar
thomwolf committed
867
            outputs = (loss,) + outputs
868

869
        return outputs
870
871


thomwolf's avatar
thomwolf committed
872
873
874
@add_start_docstrings("""XLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
875
class XLMForQuestionAnswering(XLMPreTrainedModel):
thomwolf's avatar
thomwolf committed
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
    r"""
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **is_impossible**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels whether a question has an answer or no answer (SQuAD 2.0)
        **cls_index**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the classification token to use as input for computing plausibility of the answer.
        **p_mask**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...) 

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
903
904
905
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
906
907
908

    Examples::

wangfei's avatar
wangfei committed
909
910
911
912
913
914
915
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMForQuestionAnswering.from_pretrained('xlm-mlm-en-2048')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        start_positions = torch.tensor([1])
        end_positions = torch.tensor([3])
        outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        loss, start_scores, end_scores = outputs[:2]
916
917

    """
thomwolf's avatar
thomwolf committed
918
    def __init__(self, config):
919
        super(XLMForQuestionAnswering, self).__init__(config)
920

thomwolf's avatar
xlm  
thomwolf committed
921
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
922
        self.qa_outputs = SQuADHead(config)
thomwolf's avatar
xlm  
thomwolf committed
923

924
925
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
926
    def forward(self, input_ids, lengths=None, position_ids=None, langs=None, token_type_ids=None,
thomwolf's avatar
thomwolf committed
927
928
                attention_mask=None, cache=None, start_positions=None, end_positions=None,
                cls_index=None, is_impossible=None, p_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
929
930
931
        transformer_outputs = self.transformer(input_ids, lengths=lengths, position_ids=position_ids,
                                               token_type_ids=token_type_ids, langs=langs,
                                               attention_mask=attention_mask, cache=cache, head_mask=head_mask)
932

933
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
934
935
936
937
938

        outputs = self.qa_outputs(output, start_positions=start_positions, end_positions=end_positions,
                                  cls_index=cls_index, is_impossible=is_impossible, p_mask=p_mask)

        outputs = outputs + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
939
940

        return outputs