run_pplm.py 29.4 KB
Newer Older
Piero Molino's avatar
Piero Molino committed
1
#! /usr/bin/env python3
Julien Chaumond's avatar
Julien Chaumond committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# coding=utf-8
# Copyright 2018 The Uber AI Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: add code for training a custom discriminator

"""
Example command with bag of words:
python examples/run_pplm.py -B space --cond_text "The president" --length 100 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.01 --window_length 5 --kl_scale 0.01 --gm_scale 0.95

Example command with discriminator:
python examples/run_pplm.py -D sentiment --label_class 3 --cond_text "The lake" --length 10 --gamma 1.0 --num_iterations 30 --num_samples 10 --stepsize 0.01 --kl_scale 0.01 --gm_scale 0.95
"""

import argparse
from operator import add
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from tqdm import trange

37
from examples.run_pplm_discrim_train import ClassificationHead
Julien Chaumond's avatar
Julien Chaumond committed
38
39
40
41
from transformers import GPT2Tokenizer
from transformers.file_utils import cached_path
from transformers.modeling_gpt2 import GPT2LMHeadModel

Piero Molino's avatar
Piero Molino committed
42

Julien Chaumond's avatar
Julien Chaumond committed
43
44
45
46
PPLM_BOW = 1
PPLM_DISCRIM = 2
PPLM_BOW_DISCRIM = 3
SMALL_CONST = 1e-15
Piero Molino's avatar
Piero Molino committed
47
SmallConst = 1e-15
Julien Chaumond's avatar
Julien Chaumond committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
TOKENIZER = GPT2Tokenizer.from_pretrained("gpt2-medium")

BAG_OF_WORDS_ARCHIVE_MAP = {
    'kitchen': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/kitchen.txt",
    'legal': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/legal.txt",
    'military': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/military.txt",
    'monsters': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/monsters.txt",
    'politics': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/politics.txt",
    'positive_words': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/positive_words.txt",
    'religion': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/religion.txt",
    'science': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/science.txt",
    'space': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/space.txt",
    'technology': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/technology.txt",
}

DISCRIMINATOR_MODELS_PARAMS = {
    "clickbait": {
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/clickbait_classifierhead.pt",
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_clickbait": 0, "clickbait": 1},
        "default_class": 1,
    },
    "sentiment": {
Piero Molino's avatar
Piero Molino committed
72
        "url": "http://s.yosinski.com/SST_classifier_head.pt",
Julien Chaumond's avatar
Julien Chaumond committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        "class_size": 5,
        "embed_size": 1024,
        "class_vocab": {"very_positive": 2, "very_negative": 3},
        "default_class": 3,
    },
    "toxicity": {
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/toxicity_classifierhead.pt",
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_toxic": 0, "toxic": 1},
        "default_class": 0,
    },
}


Piero Molino's avatar
Piero Molino committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def to_var(x, requires_grad=False, volatile=False):
    if torch.cuda.is_available():
        x = x.cuda()
    return Variable(x, requires_grad=requires_grad, volatile=volatile)


def top_k_filter(logits, k, probs=False):
    """
    Masks everything but the k top entries as -infinity (1e10).
    Used to mask logits such that e^-infinity -> 0 won't contribute to the
    sum of the denominator.
    """
    if k == 0:
        return logits
    else:
        values = torch.topk(logits, k)[0]
        batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
        if probs:
            return torch.where(logits < batch_mins,
                               torch.ones_like(logits) * 0.0, logits)
        return torch.where(logits < batch_mins, torch.ones_like(logits) * -1e10,
                           logits)


def perturb_past(past, model, prev, args, classifier, good_index=None,
                 stepsize=0.01, vocab_size=50257,
                 original_probs=None, accumulated_hidden=None, true_past=None,
                 grad_norms=None):
    window_length = args.window_length
    gm_scale, kl_scale = args.gm_scale, args.kl_scale
    one_hot_vectors = []
    for good_list in good_index:
        good_list = list(filter(lambda x: len(x) <= 1, good_list))
        good_list = torch.tensor(good_list).cuda()
        num_good = good_list.shape[0]
        one_hot_good = torch.zeros(num_good, vocab_size).cuda()
        one_hot_good.scatter_(1, good_list, 1)
        one_hot_vectors.append(one_hot_good)

    # Generate inital perturbed past
    past_perturb_orig = [
        (np.random.uniform(0.0, 0.0, p.shape).astype('float32'))
        for p in past]
Julien Chaumond's avatar
Julien Chaumond committed
131
132
133
134

    if accumulated_hidden is None:
        accumulated_hidden = 0

Piero Molino's avatar
Piero Molino committed
135
136
137
    if args.decay:
        decay_mask = torch.arange(0., 1.0 + SmallConst, 1.0 / (window_length))[
                     1:]
Julien Chaumond's avatar
Julien Chaumond committed
138
139
140
    else:
        decay_mask = 1.0

Piero Molino's avatar
Piero Molino committed
141
142
143
144
145
146
147
148
149
150
151
    # Generate a mask is gradient perturbated is based on a past window
    _, _, _, current_length, _ = past[0].shape

    if current_length > window_length and window_length > 0:
        ones_key_val_shape = tuple(past[0].shape[:-2]) + tuple(
            [window_length]) + tuple(
            past[0].shape[-1:])

        zeros_key_val_shape = tuple(past[0].shape[:-2]) + tuple(
            [current_length - window_length]) + tuple(
            past[0].shape[-1:])
Julien Chaumond's avatar
Julien Chaumond committed
152
153
154
155
156

        ones_mask = torch.ones(ones_key_val_shape)
        ones_mask = decay_mask * ones_mask.permute(0, 1, 2, 4, 3)
        ones_mask = ones_mask.permute(0, 1, 2, 4, 3)

Piero Molino's avatar
Piero Molino committed
157
158
        window_mask = torch.cat((ones_mask, torch.zeros(zeros_key_val_shape)),
                                dim=-2).cuda()
Julien Chaumond's avatar
Julien Chaumond committed
159
160
161
162
    else:
        window_mask = torch.ones_like(past[0]).cuda()

    loss_per_iter = []
Piero Molino's avatar
Piero Molino committed
163
    for i in range(args.num_iterations):
Julien Chaumond's avatar
Julien Chaumond committed
164
        print("Iteration ", i + 1)
Piero Molino's avatar
Piero Molino committed
165
166
        past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
        past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
Julien Chaumond's avatar
Julien Chaumond committed
167

Piero Molino's avatar
Piero Molino committed
168
        perturbed_past = list(map(add, past, past_perturb))
Julien Chaumond's avatar
Julien Chaumond committed
169

Piero Molino's avatar
Piero Molino committed
170
        _, _, _, current_length, _ = past_perturb[0].shape
Julien Chaumond's avatar
Julien Chaumond committed
171

Piero Molino's avatar
Piero Molino committed
172
173
        # _, future_past = model(prev, past=perturbed_past)
        # hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
174

Piero Molino's avatar
Piero Molino committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        # Piero modified model call
        logits, _, all_hidden = model(prev, past=perturbed_past)
        hidden = all_hidden[-1]
        new_accumulated_hidden = accumulated_hidden + torch.sum(hidden,
                                                                dim=1).detach()

        # TODO: Check the layer-norm consistency of this with trained discriminator
        logits = logits[:, -1, :]
        probabs = F.softmax(logits, dim=-1)
        loss = 0.0
        loss_list = []
        if args.loss_type == 1 or args.loss_type == 3:
            for one_hot_good in one_hot_vectors:
                good_logits = torch.mm(probabs, torch.t(one_hot_good))
                loss_word = good_logits
                loss_word = torch.sum(loss_word)
                loss_word = -torch.log(loss_word)
                # loss_word = torch.sum(loss_word) /torch.sum(one_hot_good)
                loss += loss_word
                loss_list.append(loss_word)
            print(" pplm_bow_loss:", loss.data.cpu().numpy())

        if args.loss_type == 2 or args.loss_type == 3:
Julien Chaumond's avatar
Julien Chaumond committed
198
            ce_loss = torch.nn.CrossEntropyLoss()
Piero Molino's avatar
Piero Molino committed
199
200
201
202
203
204
205
206
207
208
209
210
211
            new_true_past = true_past
            for i in range(args.horizon_length):
                future_probabs = F.softmax(logits, dim=-1)  # Get softmax
                future_probabs = torch.unsqueeze(future_probabs, dim=1)

                # _, new_true_past = model(future_probabs, past=new_true_past)
                # future_hidden = model.hidden_states  # Get expected hidden states

                # Piero modified model call
                wte = model.resize_token_embeddings()
                inputs_embeds = torch.matmul(future_probabs, wte.weight.data)
                _, new_true_past, future_hidden = model(
                    past=new_true_past,
Julien Chaumond's avatar
Julien Chaumond committed
212
213
                    inputs_embeds=inputs_embeds
                )
Piero Molino's avatar
Piero Molino committed
214
215
216
217
                future_hidden = future_hidden[-1]

                new_accumulated_hidden = new_accumulated_hidden + torch.sum(
                    future_hidden, dim=1)
Julien Chaumond's avatar
Julien Chaumond committed
218

Piero Molino's avatar
Piero Molino committed
219
220
            predicted_sentiment = classifier(new_accumulated_hidden / (
                        current_length + 1 + args.horizon_length))
Julien Chaumond's avatar
Julien Chaumond committed
221

Piero Molino's avatar
Piero Molino committed
222
223
224
            label = torch.tensor([args.label_class], device='cuda',
                                 dtype=torch.long)
            discrim_loss = ce_loss(predicted_sentiment, label)
Julien Chaumond's avatar
Julien Chaumond committed
225
            print(" pplm_discrim_loss:", discrim_loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
226
227
            loss += discrim_loss
            loss_list.append(discrim_loss)
Julien Chaumond's avatar
Julien Chaumond committed
228

Piero Molino's avatar
Piero Molino committed
229
230
231
232
233
234
235
236
        kl_loss = 0.0
        if kl_scale > 0.0:
            p = (F.softmax(original_probs[:, -1, :], dim=-1))
            p = p + SmallConst * (p <= SmallConst).type(
                torch.FloatTensor).cuda().detach()
            correction = SmallConst * (probabs <= SmallConst).type(
                torch.FloatTensor).cuda().detach()
            corrected_probabs = probabs + correction.detach()
Rosanne Liu's avatar
Rosanne Liu committed
237
            kl_loss = kl_scale * (
Piero Molino's avatar
Piero Molino committed
238
                (corrected_probabs * (corrected_probabs / p).log()).sum())
Julien Chaumond's avatar
Julien Chaumond committed
239
            print(' kl_loss', (kl_loss).data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
240
            loss += kl_loss  # + discrim_loss
Julien Chaumond's avatar
Julien Chaumond committed
241
242

        loss_per_iter.append(loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
243

Julien Chaumond's avatar
Julien Chaumond committed
244
245
        print(' pplm_loss', (loss - kl_loss).data.cpu().numpy())

Rosanne Liu's avatar
Rosanne Liu committed
246
        loss.backward()
Piero Molino's avatar
Piero Molino committed
247
        if grad_norms is not None and args.loss_type == 1:
Julien Chaumond's avatar
Julien Chaumond committed
248
249
            grad_norms = [
                torch.max(grad_norms[index], torch.norm(p_.grad * window_mask))
Piero Molino's avatar
Piero Molino committed
250
251
                for index, p_ in
                enumerate(past_perturb)]
Julien Chaumond's avatar
Julien Chaumond committed
252
        else:
Piero Molino's avatar
Piero Molino committed
253
254
            grad_norms = [(torch.norm(p_.grad * window_mask) + SmallConst) for
                          index, p_ in enumerate(past_perturb)]
Julien Chaumond's avatar
Julien Chaumond committed
255
256

        grad = [
Piero Molino's avatar
Piero Molino committed
257
258
259
260
            -stepsize * (p_.grad * window_mask / grad_norms[
                index] ** args.gamma).data.cpu().numpy()
            for index, p_ in enumerate(past_perturb)]
        past_perturb_orig = list(map(add, grad, past_perturb_orig))
Julien Chaumond's avatar
Julien Chaumond committed
261

Piero Molino's avatar
Piero Molino committed
262
        for p_ in past_perturb:
Julien Chaumond's avatar
Julien Chaumond committed
263
264
265
            p_.grad.data.zero_()

        new_past = []
Piero Molino's avatar
Piero Molino committed
266
267
268
        for p in past:
            new_past.append(p.detach())

Julien Chaumond's avatar
Julien Chaumond committed
269
270
        past = new_past

Piero Molino's avatar
Piero Molino committed
271
272
273
    past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
    past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
    perturbed_past = list(map(add, past, past_perturb))
Julien Chaumond's avatar
Julien Chaumond committed
274

Piero Molino's avatar
Piero Molino committed
275
    return perturbed_past, new_accumulated_hidden, grad_norms, loss_per_iter
Julien Chaumond's avatar
Julien Chaumond committed
276
277
278


def get_classifier(
Piero Molino's avatar
Piero Molino committed
279
280
        name: Optional[str], label_class: Union[str, int],
        device: Union[str, torch.device]
Julien Chaumond's avatar
Julien Chaumond committed
281
282
283
284
285
286
287
288
289
290
) -> Tuple[Optional[ClassificationHead], Optional[int]]:
    if name is None:
        return None, None

    params = DISCRIMINATOR_MODELS_PARAMS[name]
    classifier = ClassificationHead(
        class_size=params['class_size'],
        embed_size=params['embed_size']
    ).to(device)
    resolved_archive_file = cached_path(params["url"])
Piero Molino's avatar
Piero Molino committed
291
292
    classifier.load_state_dict(
        torch.load(resolved_archive_file, map_location=device))
Julien Chaumond's avatar
Julien Chaumond committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    classifier.eval()

    if isinstance(label_class, str):
        if label_class in params["class_vocab"]:
            label_id = params["class_vocab"][label_class]
        else:
            label_id = params["default_class"]
            print("label_class {} not in class_vocab".format(label_class))
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    elif isinstance(label_class, int):
        if label_class in set(params["class_vocab"].values()):
            label_id = label_class
        else:
            label_id = params["default_class"]
            print("label_class {} not in class_vocab".format(label_class))
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    else:
        label_id = params["default_class"]

    return classifier, label_id


Piero Molino's avatar
Piero Molino committed
319
320
def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str]) -> List[
    List[List[int]]]:
Julien Chaumond's avatar
Julien Chaumond committed
321
322
323
324
325
326
327
    bow_indices = []
    for id_or_path in bag_of_words_ids_or_paths:
        if id_or_path in BAG_OF_WORDS_ARCHIVE_MAP:
            filepath = cached_path(BAG_OF_WORDS_ARCHIVE_MAP[id_or_path])
        else:
            filepath = id_or_path
        with open(filepath, "r") as f:
Piero Molino's avatar
Piero Molino committed
328
329
330
331
            words = f.read().strip().split("\n")
        bow_indices.append(
            [TOKENIZER.encode(word.strip(), add_prefix_space=True) for word in
             words])
Julien Chaumond's avatar
Julien Chaumond committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    return bow_indices


def build_bows_one_hot_vectors(bow_indices):
    if bow_indices is None:
        return None

    one_hot_bows_vectors = []
    for single_bow in bow_indices:
        single_bow = list(filter(lambda x: len(x) <= 1, single_bow))
        single_bow = torch.tensor(single_bow).cuda()
        num_words = single_bow.shape[0]
        one_hot_bow = torch.zeros(num_words, TOKENIZER.vocab_size).cuda()
        one_hot_bow.scatter_(1, single_bow, 1)
        one_hot_bows_vectors.append(one_hot_bow)
    return one_hot_bows_vectors


Piero Molino's avatar
Piero Molino committed
350
def latent_perturb(model, args, context=None, sample=True, device='cuda'):
Julien Chaumond's avatar
Julien Chaumond committed
351
    classifier, class_id = get_classifier(
Piero Molino's avatar
Piero Molino committed
352
353
        args.discrim,
        args.label_class,
Julien Chaumond's avatar
Julien Chaumond committed
354
355
356
        device
    )

Piero Molino's avatar
Piero Molino committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    # if args.discrim == 'clickbait':
    #     classifier = ClassificationHead(class_size=2, embed_size=1024).to(device)
    #     classifier.load_state_dict(torch.load("discrim_models/clickbait_classifierhead.pt"))
    #     classifier.eval()
    #     args.label_class = 1 # clickbaity
    #
    # elif args.discrim == 'sentiment':
    #     classifier = ClassificationHead(class_size=5, embed_size=1024).to(device)
    #     #classifier.load_state_dict(torch.load("discrim_models/sentiment_classifierhead.pt"))
    #     classifier.load_state_dict(torch.load("discrim_models/SST_classifier_head_epoch_16.pt"))
    #     classifier.eval()
    #     if args.label_class < 0:
    #         raise Exception('Wrong class for sentiment, use --label-class 2 for *very positive*, 3 for *very negative*')
    #     #args.label_class = 2 # very pos
    #     #args.label_class = 3 # very neg
    #
    # elif args.discrim == 'toxicity':
    #     classifier = ClassificationHead(class_size=2, embed_size=1024).to(device)
    #     classifier.load_state_dict(torch.load("discrim_models/toxicity_classifierhead.pt"))
    #     classifier.eval()
    #     args.label_class = 0 # not toxic
    #
    # elif args.discrim == 'generic':
    #     if args.discrim_weights is None:
    #         raise ValueError('When using a generic discriminator, '
    #                          'discrim_weights need to be specified')
    #     if args.discrim_meta is None:
    #         raise ValueError('When using a generic discriminator, '
    #                          'discrim_meta need to be specified')
    #
    #     with open(args.discrim_meta, 'r') as discrim_meta_file:
    #         meta = json.load(discrim_meta_file)
    #
    #     classifier = ClassificationHead(
    #         class_size=meta['class_size'],
    #         embed_size=meta['embed_size'],
    #         # todo add tokenizer from meta
    #     ).to(device)
    #     classifier.load_state_dict(torch.load(args.discrim_weights))
    #     classifier.eval()
    #     if args.label_class == -1:
    #         args.label_class = meta['default_class']
    #
    # else:
    #     classifier = None

    # Get tokens for the list of positive words
    def list_tokens(word_list):
        token_list = [TOKENIZER.encode(word, add_prefix_space=True) for word in
                      word_list]
        # token_list = []
        # for word in word_list:
        #    token_list.append(TOKENIZER.encode(" " + word))
        return token_list

    # good_index = []
    # if args.bag_of_words:
    #     bags_of_words = args.bag_of_words.split(";")
    #     for wordlist in bags_of_words:
    #         with open(wordlist, "r") as f:
    #             words = f.read().strip()
    #             words = words.split('\n')
    #         good_index.append(list_tokens(words))
    #
    #     for good_list in good_index:
    #         good_list = list(filter(lambda x: len(x) <= 1, good_list))
    #         actual_words = [(TOKENIZER.decode(ww).strip(),ww) for ww in good_list]

    good_index = []
    actual_words = None
    if args.bag_of_words:
        good_index = get_bag_of_words_indices(args.bag_of_words.split(";"))

        for good_list in good_index:
            good_list = list(filter(lambda x: len(x) <= 1, good_list))
            actual_words = [(TOKENIZER.decode(ww).strip(), ww) for ww in
                            good_list]

    if args.bag_of_words and classifier:
Julien Chaumond's avatar
Julien Chaumond committed
436
        print("Both PPLM-BoW and PPLM-Discrim are on. This is not optimized.")
Piero Molino's avatar
Piero Molino committed
437
        args.loss_type = PPLM_BOW_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
438

Piero Molino's avatar
Piero Molino committed
439
440
    elif args.bag_of_words:
        args.loss_type = PPLM_BOW
Julien Chaumond's avatar
Julien Chaumond committed
441
442
443
        print("Using PPLM-BoW")

    elif classifier is not None:
Piero Molino's avatar
Piero Molino committed
444
        args.loss_type = PPLM_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
445
446
447
448
449
        print("Using PPLM-Discrim")

    else:
        raise Exception("Specify either --bag_of_words (-B) or --discrim (-D)")

Piero Molino's avatar
Piero Molino committed
450
451
452
453
    original, _, _ = sample_from_hidden(model=model, args=args, context=context,
                                        device=device,
                                        perturb=False, good_index=good_index,
                                        classifier=classifier)
Julien Chaumond's avatar
Julien Chaumond committed
454
455
    torch.cuda.empty_cache()

Piero Molino's avatar
Piero Molino committed
456
457
458
459
460
461
462
463
464
465
466
467
468
    perturbed_list = []
    discrim_loss_list = []
    loss_in_time_list = []

    for i in range(args.num_samples):
        perturbed, discrim_loss, loss_in_time = sample_from_hidden(model=model,
                                                                   args=args,
                                                                   context=context,
                                                                   device=device,
                                                                   perturb=True,
                                                                   good_index=good_index,
                                                                   classifier=classifier)
        perturbed_list.append(perturbed)
Julien Chaumond's avatar
Julien Chaumond committed
469
        if classifier is not None:
Piero Molino's avatar
Piero Molino committed
470
471
            discrim_loss_list.append(discrim_loss.data.cpu().numpy())
        loss_in_time_list.append(loss_in_time)
Julien Chaumond's avatar
Julien Chaumond committed
472
473
474

    torch.cuda.empty_cache()

Piero Molino's avatar
Piero Molino committed
475
476
    return original, perturbed_list, discrim_loss_list, loss_in_time_list, actual_words

Julien Chaumond's avatar
Julien Chaumond committed
477

Piero Molino's avatar
Piero Molino committed
478
479
480
481
482
def sample_from_hidden(model, args, classifier, context=None, past=None,
                       device='cuda',
                       sample=True, perturb=True, good_index=None):
    output = torch.tensor(context, device=device, dtype=torch.long).unsqueeze(
        0) if context else None
Julien Chaumond's avatar
Julien Chaumond committed
483
484
485

    grad_norms = None
    loss_in_time = []
Piero Molino's avatar
Piero Molino committed
486
    for i in trange(args.length, ascii=True):
Julien Chaumond's avatar
Julien Chaumond committed
487
488

        # Get past/probs for current output, except for last word
Piero Molino's avatar
Piero Molino committed
489
490
        # Note that GPT takes 2 inputs: past + current-token
        # Therefore, use everything from before current i/p token to generate relevant past
Julien Chaumond's avatar
Julien Chaumond committed
491

Piero Molino's avatar
Piero Molino committed
492
493
494
495
496
        if past is None and output is not None:
            prev = output[:, -1:]
            # _, past = model(output[:, :-1])
            # original_probs, true_past = model(output)
            # true_hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
497

Piero Molino's avatar
Piero Molino committed
498
499
500
501
            # Piero modified model call
            _, past, _ = model(output[:, :-1])
            original_probs, true_past, unpert_all_hidden = model(output)
            true_hidden = unpert_all_hidden[-1]
Julien Chaumond's avatar
Julien Chaumond committed
502
503

        else:
Piero Molino's avatar
Piero Molino committed
504
505
            # original_probs, true_past = model(output)
            # true_hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
506

Piero Molino's avatar
Piero Molino committed
507
508
509
510
511
512
513
514
            # Piero modified model call
            original_probs, true_past, unpert_all_hidden = model(output)
            true_hidden = unpert_all_hidden[-1]

        # Modify the past if necessary

        if i >= args.grad_length:
            current_stepsize = args.stepsize * 0
Julien Chaumond's avatar
Julien Chaumond committed
515
        else:
Piero Molino's avatar
Piero Molino committed
516
            current_stepsize = args.stepsize
Julien Chaumond's avatar
Julien Chaumond committed
517

Piero Molino's avatar
Piero Molino committed
518
519
        if not perturb or args.num_iterations == 0:
            perturbed_past = past
Julien Chaumond's avatar
Julien Chaumond committed
520
521

        else:
Piero Molino's avatar
Piero Molino committed
522
523
524
            # Piero modified model call
            # accumulated_hidden = model.hidden_states[:, :-1, :]
            accumulated_hidden = true_hidden[:, :-1, :]
Julien Chaumond's avatar
Julien Chaumond committed
525
526
            accumulated_hidden = torch.sum(accumulated_hidden, dim=1)

Piero Molino's avatar
Piero Molino committed
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
            perturbed_past, _, grad_norms, loss_per_iter = perturb_past(past,
                                                                        model,
                                                                        prev,
                                                                        args,
                                                                        good_index=good_index,
                                                                        stepsize=current_stepsize,
                                                                        original_probs=original_probs,
                                                                        true_past=true_past,
                                                                        accumulated_hidden=accumulated_hidden,
                                                                        classifier=classifier,
                                                                        grad_norms=grad_norms)
            loss_in_time.append(loss_per_iter)

        # Piero modified model call
        logits, past, pert_all_hidden = model(prev, past=perturbed_past)
        # test_logits = F.softmax(test_logits[:, -1, :], dim=-1)
        # likelywords = torch.topk(test_logits, k=10, dim=-1)
        # print(TOKENIZER.decode(likelywords[1].tolist()[0]))
Julien Chaumond's avatar
Julien Chaumond committed
545
546

        if classifier is not None:
Piero Molino's avatar
Piero Molino committed
547
548
549
550
551
552
            ce_loss = torch.nn.CrossEntropyLoss()
            predicted_sentiment = classifier(torch.mean(true_hidden, dim=1))
            label = torch.tensor([args.label_class], device='cuda',
                                 dtype=torch.long)
            true_discrim_loss = ce_loss(predicted_sentiment, label)
            print("true discrim loss", true_discrim_loss.data.cpu().numpy())
Julien Chaumond's avatar
Julien Chaumond committed
553
        else:
Piero Molino's avatar
Piero Molino committed
554
555
556
557
558
559
560
561
            true_discrim_loss = 0

        # Piero modified model call
        # hidden = model.hidden_states  # update hidden
        # logits = model.forward_hidden(hidden)
        logits = logits[:, -1, :] / args.temperature  # + SmallConst

        # logits = top_k_filter(logits, k=args.top_k)  # + SmallConst
Julien Chaumond's avatar
Julien Chaumond committed
562

Piero Molino's avatar
Piero Molino committed
563
564
565
        log_probs = F.softmax(logits, dim=-1)

        # Fuse the modified model and original model
Julien Chaumond's avatar
Julien Chaumond committed
566
567
        if perturb:

Piero Molino's avatar
Piero Molino committed
568
569
570
571
572
573
574
575
            # original_probs = top_k_filter(original_probs[:, -1, :]) #+ SmallConst
            original_probs = F.softmax(original_probs[:, -1, :], dim=-1)
            # likelywords = torch.topk(original_probs, k=10, dim=-1)
            # print(TOKENIZER.decode(likelywords[1].tolist()[0]))

            gm_scale = args.gm_scale
            log_probs = ((log_probs ** gm_scale) * (
                        original_probs ** (1 - gm_scale)))  # + SmallConst
Julien Chaumond's avatar
Julien Chaumond committed
576

Piero Molino's avatar
Piero Molino committed
577
578
            log_probs = top_k_filter(log_probs, k=args.top_k,
                                     probs=True)  # + SmallConst
Julien Chaumond's avatar
Julien Chaumond committed
579

Piero Molino's avatar
Piero Molino committed
580
581
            if torch.sum(log_probs) <= 1:
                log_probs = log_probs / torch.sum(log_probs)
Julien Chaumond's avatar
Julien Chaumond committed
582
583

        else:
Piero Molino's avatar
Piero Molino committed
584
585
            logits = top_k_filter(logits, k=args.top_k)  # + SmallConst
            log_probs = F.softmax(logits, dim=-1)
Julien Chaumond's avatar
Julien Chaumond committed
586
587

        if sample:
Piero Molino's avatar
Piero Molino committed
588
589
590
591
            # likelywords = torch.topk(log_probs, k=args.top_k, dim=-1)
            # print(TOKENIZER.decode(likelywords[1].tolist()[0]))
            # print(likelywords[0].tolist())
            prev = torch.multinomial(log_probs, num_samples=1)
Julien Chaumond's avatar
Julien Chaumond committed
592
        else:
Piero Molino's avatar
Piero Molino committed
593
594
595
596
597
598
            _, prev = torch.topk(log_probs, k=1, dim=-1)
        # if perturb:
        #     prev = future
        output = prev if output is None else torch.cat((output, prev),
                                                       dim=1)  # update output
        print(TOKENIZER.decode(output.tolist()[0]))
Julien Chaumond's avatar
Julien Chaumond committed
599

Piero Molino's avatar
Piero Molino committed
600
    return output, true_discrim_loss, loss_in_time
Julien Chaumond's avatar
Julien Chaumond committed
601
602
603
604


def run_model():
    parser = argparse.ArgumentParser()
Piero Molino's avatar
Piero Molino committed
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
    parser.add_argument('--model_path', '-M', type=str, default='gpt2-medium',
                        help='pretrained model name or path to local checkpoint')
    parser.add_argument('--bag-of-words', '-B', type=str, default=None,
                        help='Bags of words used for PPLM-BoW. Multiple BoWs separated by ;')
    parser.add_argument('--discrim', '-D', type=str, default=None,
                        choices=(
                        'clickbait', 'sentiment', 'toxicity', 'generic'),
                        help='Discriminator to use for loss-type 2')
    parser.add_argument('--discrim_weights', type=str, default=None,
                        help='Weights for the generic discriminator')
    parser.add_argument('--discrim_meta', type=str, default=None,
                        help='Meta information for the generic discriminator')
    parser.add_argument('--label_class', type=int, default=-1,
                        help='Class label used for the discriminator')
    parser.add_argument('--stepsize', type=float, default=0.02)
Julien Chaumond's avatar
Julien Chaumond committed
620
621
622
623
624
625
    parser.add_argument("--length", type=int, default=100)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=1.0)
    parser.add_argument("--top_k", type=int, default=10)
    parser.add_argument("--gm_scale", type=float, default=0.9)
    parser.add_argument("--kl_scale", type=float, default=0.01)
Piero Molino's avatar
Piero Molino committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    parser.add_argument('--nocuda', action='store_true', help='no cuda')
    parser.add_argument('--uncond', action='store_true',
                        help='Generate from end-of-text as prefix')
    parser.add_argument("--cond_text", type=str, default='The lake',
                        help='Prefix texts to condition on')
    parser.add_argument('--num_iterations', type=int, default=3)
    parser.add_argument('--grad_length', type=int, default=10000)
    parser.add_argument('--num_samples', type=int, default=1,
                        help='Number of samples to generate from the modified latents')
    parser.add_argument('--horizon_length', type=int, default=1,
                        help='Length of future to optimize over')
    # parser.add_argument('--force-token', action='store_true', help='no cuda')
    parser.add_argument('--window_length', type=int, default=0,
                        help='Length of past which is being optimizer; 0 corresponds to infinite window length')
    parser.add_argument('--decay', action='store_true',
                        help='whether to decay or not')
    parser.add_argument('--gamma', type=float, default=1.5)
    parser.add_argument('--colorama', action='store_true', help='no cuda')
Julien Chaumond's avatar
Julien Chaumond committed
644
645
646
647
648
649

    args = parser.parse_args()

    torch.manual_seed(args.seed)
    np.random.seed(args.seed)

Piero Molino's avatar
Piero Molino committed
650
    device = 'cpu' if args.nocuda else 'cuda'
Julien Chaumond's avatar
Julien Chaumond committed
651
652
653
654
655
656
657
658

    model = GPT2LMHeadModel.from_pretrained(
        args.model_path,
        output_hidden_states=True
    )
    model.to(device)
    model.eval()

Piero Molino's avatar
Piero Molino committed
659
    # Freeze GPT-2 weights
Julien Chaumond's avatar
Julien Chaumond committed
660
661
    for param in model.parameters():
        param.requires_grad = False
Piero Molino's avatar
Piero Molino committed
662
    pass
Julien Chaumond's avatar
Julien Chaumond committed
663
664

    if args.uncond:
Piero Molino's avatar
Piero Molino committed
665
666
        seq = [[50256, 50256]]

Julien Chaumond's avatar
Julien Chaumond committed
667
668
669
    else:
        raw_text = args.cond_text
        while not raw_text:
Piero Molino's avatar
Piero Molino committed
670
            print('Did you forget to add `--cond-text`? ')
Julien Chaumond's avatar
Julien Chaumond committed
671
            raw_text = input("Model prompt >>> ")
Piero Molino's avatar
Piero Molino committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
        seq = [[50256] + TOKENIZER.encode(raw_text)]

    collect_gen = dict()
    current_index = 0
    for out in seq:

        text = TOKENIZER.decode(out)
        print("=" * 40 + " Prefix of sentence " + "=" * 40)
        print(text)
        print("=" * 80)

        out1, out_perturb, discrim_loss_list, loss_in_time_list, actual_words = latent_perturb(
            model=model, args=args, context=out,
            device=device)

        text_whole = TOKENIZER.decode(out1.tolist()[0])

        print("=" * 80)
        print("=" * 40 + " Whole sentence (Original)" + "=" * 40)
        print(text_whole)
        print("=" * 80)

        out_perturb_copy = out_perturb

        for out_perturb in out_perturb_copy:
            # try:
            #    print("=" * 40 + " Whole sentence (Perturbed)" + "=" * 40)
            #    text_whole = TOKENIZER.decode(out_perturb.tolist()[0])
            #    print(text_whole)
            #    print("=" * 80)
            # except:
            #    pass
            # collect_gen[current_index] = [out, out_perturb, out1]
            ## Save the prefix, perturbed seq, original seq for each index
            print("=" * 40 + " Whole sentence (Perturbed)" + "=" * 40)
            keyword_tokens = [aa[-1][0] for aa in
                              actual_words] if actual_words else []
            output_tokens = out_perturb.tolist()[0]

            if args.colorama:
                import colorama

                text_whole = ''
                for out in output_tokens:
                    if out in keyword_tokens:
                        text_whole += '%s%s%s' % (
                        colorama.Fore.GREEN, TOKENIZER.decode([out]),
                        colorama.Style.RESET_ALL)
                    else:
                        text_whole += TOKENIZER.decode([out])
            else:
                text_whole = TOKENIZER.decode(out_perturb.tolist()[0])
Julien Chaumond's avatar
Julien Chaumond committed
724

Piero Molino's avatar
Piero Molino committed
725
726
            print(text_whole)
            print("=" * 80)
Julien Chaumond's avatar
Julien Chaumond committed
727

Piero Molino's avatar
Piero Molino committed
728
            collect_gen[current_index] = [out, out_perturb, out1]
Julien Chaumond's avatar
Julien Chaumond committed
729

Piero Molino's avatar
Piero Molino committed
730
            current_index = current_index + 1
Julien Chaumond's avatar
Julien Chaumond committed
731
732


Piero Molino's avatar
Piero Molino committed
733
    return
Julien Chaumond's avatar
Julien Chaumond committed
734
735


Piero Molino's avatar
Piero Molino committed
736
if __name__ == '__main__':
Julien Chaumond's avatar
Julien Chaumond committed
737
    run_model()