"src/vscode:/vscode.git/clone" did not exist on "3f35b208f2bbb9868a9145478b069d76c020d453"
test_pipelines.py 18.8 KB
Newer Older
1
import unittest
Julien Chaumond's avatar
Julien Chaumond committed
2
from typing import Iterable, List, Optional
Morgan Funtowicz's avatar
Morgan Funtowicz committed
3
4

from transformers import pipeline
5
from transformers.pipelines import DefaultArgumentHandler, Pipeline
6

Lysandre Debut's avatar
Lysandre Debut committed
7
from .utils import require_tf, require_torch, slow
8

Aymeric Augustin's avatar
Aymeric Augustin committed
9

10
11
QA_FINETUNED_MODELS = [
    (("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
Patrick von Platen's avatar
Patrick von Platen committed
12
    (("distilbert-base-cased-distilled-squad", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
13
]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
14

15
16
TF_QA_FINETUNED_MODELS = [
    (("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
Patrick von Platen's avatar
Patrick von Platen committed
17
    (("distilbert-base-cased-distilled-squad", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
18
]
19
20
21

TF_NER_FINETUNED_MODELS = {
    (
22
        "bert-base-cased",
Julien Chaumond's avatar
Julien Chaumond committed
23
24
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
25
26
27
    )
}

Morgan Funtowicz's avatar
Morgan Funtowicz committed
28
29
NER_FINETUNED_MODELS = {
    (
30
        "bert-base-cased",
Julien Chaumond's avatar
Julien Chaumond committed
31
32
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
Morgan Funtowicz's avatar
Morgan Funtowicz committed
33
34
35
36
    )
}

FEATURE_EXTRACT_FINETUNED_MODELS = {
37
38
    ("bert-base-cased", "bert-base-cased", None),
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
39
    ("distilbert-base-cased", "distilbert-base-cased", None),
Morgan Funtowicz's avatar
Morgan Funtowicz committed
40
}
41

42
TF_FEATURE_EXTRACT_FINETUNED_MODELS = {
43
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
44
    ("distilbert-base-cased", "distilbert-base-cased", None),
45
46
47
48
}

TF_TEXT_CLASSIF_FINETUNED_MODELS = {
    (
49
        "bert-base-uncased",
50
51
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
52
53
54
    )
}

Morgan Funtowicz's avatar
Morgan Funtowicz committed
55
56
TEXT_CLASSIF_FINETUNED_MODELS = {
    (
Funtowicz Morgan's avatar
Funtowicz Morgan committed
57
        "distilbert-base-cased",
58
59
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
Morgan Funtowicz's avatar
Morgan Funtowicz committed
60
    )
61
62
}

63
64
65
66
67
TEXT_GENERATION_FINETUNED_MODELS = {
    ("gpt2", "gpt2"),
    ("xlnet-base-cased", "xlnet-base-cased"),
}

68
69
70
FILL_MASK_FINETUNED_MODELS = [
    (("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
Julien Chaumond's avatar
Julien Chaumond committed
71

72
73
74
TF_FILL_MASK_FINETUNED_MODELS = [
    (("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
Julien Chaumond's avatar
Julien Chaumond committed
75

76
77
78
79
80
SUMMARIZATION_FINETUNED_MODELS = {
    ("sshleifer/bart-tiny-random", "bart-large-cnn"),
    ("patrickvonplaten/t5-tiny-random", "t5-small"),
}
TF_SUMMARIZATION_FINETUNED_MODELS = {("patrickvonplaten/t5-tiny-random", "t5-small")}
81

82
TRANSLATION_FINETUNED_MODELS = {
83
84
    ("patrickvonplaten/t5-tiny-random", "t5-small", "translation_en_to_de"),
    ("patrickvonplaten/t5-tiny-random", "t5-small", "translation_en_to_ro"),
85
}
86
TF_TRANSLATION_FINETUNED_MODELS = {("patrickvonplaten/t5-tiny-random", "t5-small", "translation_en_to_fr")}
87

88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
class DefaultArgumentHandlerTestCase(unittest.TestCase):
    def setUp(self) -> None:
        self.handler = DefaultArgumentHandler()

    def test_kwargs_x(self):
        mono_data = {"X": "This is a sample input"}
        mono_args = self.handler(**mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        multi_data = {"x": ["This is a sample input", "This is a second sample input"]}
        multi_args = self.handler(**multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)

    def test_kwargs_data(self):
        mono_data = {"data": "This is a sample input"}
        mono_args = self.handler(**mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        multi_data = {"data": ["This is a sample input", "This is a second sample input"]}
        multi_args = self.handler(**multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)

    def test_multi_kwargs(self):
        mono_data = {"data": "This is a sample input", "X": "This is a sample input 2"}
        mono_args = self.handler(**mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 2)

        multi_data = {
            "data": ["This is a sample input", "This is a second sample input"],
            "test": ["This is a sample input 2", "This is a second sample input 2"],
        }
        multi_args = self.handler(**multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 4)

    def test_args(self):
        mono_data = "This is a sample input"
        mono_args = self.handler(mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        mono_data = ["This is a sample input"]
        mono_args = self.handler(mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        multi_data = ["This is a sample input", "This is a second sample input"]
        multi_args = self.handler(multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)

        multi_data = ["This is a sample input", "This is a second sample input"]
        multi_args = self.handler(*multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)


Morgan Funtowicz's avatar
Morgan Funtowicz committed
161
class MonoColumnInputTestCase(unittest.TestCase):
Julien Chaumond's avatar
Julien Chaumond committed
162
163
164
165
166
167
168
169
170
    def _test_mono_column_pipeline(
        self,
        nlp: Pipeline,
        valid_inputs: List,
        invalid_inputs: List,
        output_keys: Iterable[str],
        expected_multi_result: Optional[List] = None,
        expected_check_keys: Optional[List[str]] = None,
    ):
Morgan Funtowicz's avatar
Morgan Funtowicz committed
171
172
173
174
175
176
177
178
179
180
181
182
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in output_keys:
            self.assertIn(key, mono_result[0])

183
        multi_result = [nlp(input) for input in valid_inputs]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
184
185
186
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

Julien Chaumond's avatar
Julien Chaumond committed
187
188
189
190
191
192
193
        if expected_multi_result is not None:
            for result, expect in zip(multi_result, expected_multi_result):
                for key in expected_check_keys or []:
                    self.assertEqual(
                        set([o[key] for o in result]), set([o[key] for o in expect]),
                    )

Morgan Funtowicz's avatar
Morgan Funtowicz committed
194
195
196
197
198
199
200
201
202
        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs)

203
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
204
    def test_ner(self):
205
206
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
207
208
        invalid_inputs = [None]
        for tokenizer, model, config in NER_FINETUNED_MODELS:
209
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer)
210
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
211

212
213
    @require_tf
    def test_tf_ner(self):
214
215
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
216
        invalid_inputs = [None]
217
        for tokenizer, model, config in TF_NER_FINETUNED_MODELS:
218
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer, framework="tf")
219
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
220

221
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
222
    def test_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
223
        mandatory_keys = {"label", "score"}
224
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
225
226
        invalid_inputs = [None]
        for tokenizer, model, config in TEXT_CLASSIF_FINETUNED_MODELS:
227
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer)
228
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
229

230
231
    @require_tf
    def test_tf_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
232
        mandatory_keys = {"label", "score"}
233
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
234
        invalid_inputs = [None]
235
        for tokenizer, model, config in TF_TEXT_CLASSIF_FINETUNED_MODELS:
236
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer, framework="tf")
237
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
238

239
    @require_torch
Julien Chaumond's avatar
Julien Chaumond committed
240
    def test_feature_extraction(self):
241
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
242
243
        invalid_inputs = [None]
        for tokenizer, model, config in FEATURE_EXTRACT_FINETUNED_MODELS:
Julien Chaumond's avatar
Julien Chaumond committed
244
            nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer)
245
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
246

247
    @require_tf
Julien Chaumond's avatar
Julien Chaumond committed
248
    def test_tf_feature_extraction(self):
249
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
250
        invalid_inputs = [None]
251
        for tokenizer, model, config in TF_FEATURE_EXTRACT_FINETUNED_MODELS:
252
            nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer, framework="tf")
253
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
254

Julien Chaumond's avatar
Julien Chaumond committed
255
256
257
258
259
260
261
262
263
264
    @require_torch
    def test_fill_mask(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        invalid_inputs = [None]
        expected_multi_result = [
            [
265
266
                {"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
                {"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
Julien Chaumond's avatar
Julien Chaumond committed
267
268
269
            ],
            [
                {
270
271
272
273
274
275
276
                    "sequence": "<s> The largest city in France is Paris</s>",
                    "score": 0.3185044229030609,
                    "token": 2201,
                },
                {
                    "sequence": "<s> The largest city in France is Lyon</s>",
                    "score": 0.21112334728240967,
Julien Chaumond's avatar
Julien Chaumond committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
                    "token": 12790,
                },
            ],
        ]
        for tokenizer, model, config in FILL_MASK_FINETUNED_MODELS:
            nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, topk=2)
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                invalid_inputs,
                mandatory_keys,
                expected_multi_result=expected_multi_result,
                expected_check_keys=["sequence"],
            )

    @require_tf
    def test_tf_fill_mask(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        invalid_inputs = [None]
        expected_multi_result = [
            [
302
303
                {"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
                {"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
Julien Chaumond's avatar
Julien Chaumond committed
304
305
306
            ],
            [
                {
307
308
309
310
311
312
313
                    "sequence": "<s> The largest city in France is Paris</s>",
                    "score": 0.3185044229030609,
                    "token": 2201,
                },
                {
                    "sequence": "<s> The largest city in France is Lyon</s>",
                    "score": 0.21112334728240967,
Julien Chaumond's avatar
Julien Chaumond committed
314
315
316
317
318
                    "token": 12790,
                },
            ],
        ]
        for tokenizer, model, config in TF_FILL_MASK_FINETUNED_MODELS:
319
            nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, framework="tf", topk=2)
Julien Chaumond's avatar
Julien Chaumond committed
320
321
322
323
324
325
326
327
328
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                invalid_inputs,
                mandatory_keys,
                expected_multi_result=expected_multi_result,
                expected_check_keys=["sequence"],
            )

329
330
331
332
333
    @require_torch
    def test_summarization(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["summary_text"]
334
335
336
337
338
339
340
341
342
343
344
345
346
347
        for model, tokenizer in SUMMARIZATION_FINETUNED_MODELS:
            nlp = pipeline(task="summarization", model=model, tokenizer=tokenizer)
            self._test_mono_column_pipeline(
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )

    @require_tf
    def test_tf_summarization(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["summary_text"]
        for model, tokenizer in TF_SUMMARIZATION_FINETUNED_MODELS:
            nlp = pipeline(task="summarization", model=model, tokenizer=tokenizer, framework="tf")
            self._test_mono_column_pipeline(
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )

    @require_torch
    def test_translation(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["translation_text"]
        for model, tokenizer, task in TRANSLATION_FINETUNED_MODELS:
            nlp = pipeline(task=task, model=model, tokenizer=tokenizer)
            self._test_mono_column_pipeline(
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )

    @require_tf
    def test_tf_translation(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["translation_text"]
        for model, tokenizer, task in TF_TRANSLATION_FINETUNED_MODELS:
            nlp = pipeline(task=task, model=model, tokenizer=tokenizer, framework="tf")
            self._test_mono_column_pipeline(
370
371
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )
372

373
374
375
376
377
378
379
380
381
382
    @require_torch
    def test_text_generation(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [None]
        for model, tokenizer in TEXT_GENERATION_FINETUNED_MODELS:
            nlp = pipeline(task="text-generation", model=model, tokenizer=tokenizer, framework="pt")
            self._test_mono_column_pipeline(
                nlp, valid_inputs, invalid_inputs, {},
            )

Morgan Funtowicz's avatar
Morgan Funtowicz committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

class MultiColumnInputTestCase(unittest.TestCase):
    def _test_multicolumn_pipeline(self, nlp, valid_inputs: list, invalid_inputs: list, output_keys: Iterable[str]):
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, dict)

        for key in output_keys:
            self.assertIn(key, mono_result)

        multi_result = nlp(valid_inputs)
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], dict)

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs[0])
        self.assertRaises(Exception, nlp, invalid_inputs)

405
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
406
    def test_question_answering(self):
407
        mandatory_output_keys = {"score", "answer", "start", "end"}
Morgan Funtowicz's avatar
Morgan Funtowicz committed
408
        valid_samples = [
409
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
Morgan Funtowicz's avatar
Morgan Funtowicz committed
410
            {
411
412
413
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
Morgan Funtowicz's avatar
Morgan Funtowicz committed
414
415
        ]
        invalid_samples = [
416
417
418
419
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
Morgan Funtowicz's avatar
Morgan Funtowicz committed
420
421
422
        ]

        for tokenizer, model, config in QA_FINETUNED_MODELS:
423
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer)
424
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
425

426
    @require_tf
Lysandre's avatar
Lysandre committed
427
    @slow
428
    def test_tf_question_answering(self):
429
        mandatory_output_keys = {"score", "answer", "start", "end"}
430
        valid_samples = [
431
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
432
            {
433
434
435
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
436
437
        ]
        invalid_samples = [
438
439
440
441
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
442
        ]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
443

444
        for tokenizer, model, config in TF_QA_FINETUNED_MODELS:
445
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer, framework="tf")
446
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)
Lysandre Debut's avatar
Lysandre Debut committed
447
448
449
450
451


class PipelineCommonTests(unittest.TestCase):

    pipelines = (
Patrick von Platen's avatar
Patrick von Platen committed
452
453
454
455
456
457
458
459
460
        "ner",
        "feature-extraction",
        "question-answering",
        "fill-mask",
        "summarization",
        "sentiment-analysis",
        "translation_en_to_fr",
        "translation_en_to_de",
        "translation_en_to_ro",
461
        "text-generation",
Lysandre Debut's avatar
Lysandre Debut committed
462
463
464
465
466
467
    )

    @slow
    @require_tf
    def test_tf_defaults(self):
        # Test that pipelines can be correctly loaded without any argument
Patrick von Platen's avatar
Patrick von Platen committed
468
469
470
        for task in self.pipelines:
            with self.subTest(msg="Testing Torch defaults with PyTorch and {}".format(task)):
                pipeline(task, framework="tf")
Lysandre Debut's avatar
Lysandre Debut committed
471
472
473
474
475

    @slow
    @require_torch
    def test_pt_defaults(self):
        # Test that pipelines can be correctly loaded without any argument
Patrick von Platen's avatar
Patrick von Platen committed
476
477
478
        for task in self.pipelines:
            with self.subTest(msg="Testing Torch defaults with PyTorch and {}".format(task)):
                pipeline(task, framework="pt")