pipelines.mdx 13.7 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Pipelines

The pipelines are a great and easy way to use models for inference. These pipelines are objects that abstract most of
the complex code from the library, offering a simple API dedicated to several tasks, including Named Entity
Recognition, Masked Language Modeling, Sentiment Analysis, Feature Extraction and Question Answering. See the
[task summary](../task_summary) for examples of use.

There are two categories of pipeline abstractions to be aware about:

- The [`pipeline`] which is the most powerful object encapsulating all other pipelines.
- The other task-specific pipelines:

  - [`AudioClassificationPipeline`]
  - [`AutomaticSpeechRecognitionPipeline`]
  - [`ConversationalPipeline`]
  - [`FeatureExtractionPipeline`]
  - [`FillMaskPipeline`]
  - [`ImageClassificationPipeline`]
  - [`ImageSegmentationPipeline`]
  - [`ObjectDetectionPipeline`]
  - [`QuestionAnsweringPipeline`]
  - [`SummarizationPipeline`]
  - [`TableQuestionAnsweringPipeline`]
  - [`TextClassificationPipeline`]
  - [`TextGenerationPipeline`]
  - [`Text2TextGenerationPipeline`]
  - [`TokenClassificationPipeline`]
  - [`TranslationPipeline`]
  - [`ZeroShotClassificationPipeline`]

## The pipeline abstraction

The *pipeline* abstraction is a wrapper around all the other available pipelines. It is instantiated as any other
pipeline but can provide additional quality of life.

Simple call on one item:

```python
>>> pipe = pipeline("text-classification")
>>> pipe("This restaurant is awesome")
[{'label': 'POSITIVE', 'score': 0.9998743534088135}]
```

If you want to use a specific model from the [hub](https://huggingface.co) you can ignore the task if the model on
the hub already defines it:

```python
>>> pipe = pipeline(model="roberta-large-mnli")
>>> pipe("This restaurant is awesome")
[{'label': 'POSITIVE', 'score': 0.9998743534088135}]
```

To call a pipeline on many items, you can either call with a *list*.

```python
>>> pipe = pipeline("text-classification")
>>> pipe(["This restaurant is awesome", "This restaurant is aweful"])
[{'label': 'POSITIVE', 'score': 0.9998743534088135},
 {'label': 'NEGATIVE', 'score': 0.9996669292449951}]
```

To iterate of full datasets it is recommended to use a `dataset` directly. This means you don't need to allocate
the whole dataset at once, nor do you need to do batching yourself. This should work just as fast as custom loops on
GPU. If it doesn't don't hesitate to create an issue.

```python
import datasets
from transformers import pipeline
from transformers.pipelines.base import KeyDataset
82
from tqdm.auto import tqdm
Sylvain Gugger's avatar
Sylvain Gugger committed
83
84
85
86
87
88

pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0)
dataset = datasets.load_dataset("superb", name="asr", split="test")

# KeyDataset (only *pt*) will simply return the item in the dict returned by the dataset item
# as we're not interested in the *target* part of the dataset.
89
for out in tqdm(pipe(KeyDataset(dataset, "file"))):
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
92
93
94
95
    print(out)
    # {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"}
    # {"text": ....}
    # ....
```

96
97
98
99
100
101
102
103
For ease of use, a generator is also possible:


```python
from transformers import pipeline

pipe = pipeline("text-classification")

Sylvain Gugger's avatar
Sylvain Gugger committed
104

105
106
107
108
109
110
111
112
113
def data():
    while True:
        # This could come from a dataset, a database, a queue or HTTP request
        # in a server
        # Caveat: because this is iterative, you cannot use `num_workers > 1` variable
        # to use multiple threads to preprocess data. You can still have 1 thread that
        # does the preprocessing while the main runs the big inference
        yield "This is a test"

Sylvain Gugger's avatar
Sylvain Gugger committed
114

115
116
117
118
119
120
121
for out in pipe(data()):
    print(out)
    # {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"}
    # {"text": ....}
    # ....
```

Sylvain Gugger's avatar
Sylvain Gugger committed
122
123
124
125
[[autodoc]] pipeline

## Pipeline batching

126
127
All pipelines can use batching. This will work
whenever the pipeline uses its streaming ability (so when passing lists or `Dataset` or `generator`).
Sylvain Gugger's avatar
Sylvain Gugger committed
128
129

```python
Sylvain Gugger's avatar
Sylvain Gugger committed
130
from transformers import pipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from transformers.pipelines.base import KeyDataset
import datasets

dataset = datasets.load_dataset("imdb", name="plain_text", split="unsupervised")
pipe = pipeline("text-classification", device=0)
for out in pipe(KeyDataset(dataset, "text"), batch_size=8, truncation="only_first"):
    print(out)
    # [{'label': 'POSITIVE', 'score': 0.9998743534088135}]
    # Exactly the same output as before, but the content are passed
    # as batches to the model
```

<Tip warning={true}>

However, this is not automatically a win for performance. It can be either a 10x speedup or 5x slowdown depending
on hardware, data and the actual model being used.

148
Example where it's mostly a speedup:
Sylvain Gugger's avatar
Sylvain Gugger committed
149
150
151
152

</Tip>

```python
Sylvain Gugger's avatar
Sylvain Gugger committed
153
154
from transformers import pipeline
from torch.utils.data import Dataset
155
from tqdm.auto import tqdm
Sylvain Gugger's avatar
Sylvain Gugger committed
156

Sylvain Gugger's avatar
Sylvain Gugger committed
157
pipe = pipeline("text-classification", device=0)
Sylvain Gugger's avatar
Sylvain Gugger committed
158
159


Sylvain Gugger's avatar
Sylvain Gugger committed
160
161
162
class MyDataset(Dataset):
    def __len__(self):
        return 5000
Sylvain Gugger's avatar
Sylvain Gugger committed
163

Sylvain Gugger's avatar
Sylvain Gugger committed
164
165
    def __getitem__(self, i):
        return "This is a test"
Sylvain Gugger's avatar
Sylvain Gugger committed
166
167


Sylvain Gugger's avatar
Sylvain Gugger committed
168
dataset = MyDataset()
Sylvain Gugger's avatar
Sylvain Gugger committed
169
170

for batch_size in [1, 8, 64, 256]:
Sylvain Gugger's avatar
Sylvain Gugger committed
171
172
    print("-" * 30)
    print(f"Streaming batch_size={batch_size}")
173
    for out in tqdm(pipe(dataset, batch_size=batch_size), total=len(dataset)):
Sylvain Gugger's avatar
Sylvain Gugger committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        pass
```

```
# On GTX 970
------------------------------
Streaming no batching
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 5000/5000 [00:26<00:00, 187.52it/s]
------------------------------
Streaming batch_size=8
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 5000/5000 [00:04<00:00, 1205.95it/s]
------------------------------
Streaming batch_size=64
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 5000/5000 [00:02<00:00, 2478.24it/s]
------------------------------
Streaming batch_size=256
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 5000/5000 [00:01<00:00, 2554.43it/s]
(diminishing returns, saturated the GPU)
```

Example where it's most a slowdown:

```python
Sylvain Gugger's avatar
Sylvain Gugger committed
197
198
199
200
201
202
203
204
205
class MyDataset(Dataset):
    def __len__(self):
        return 5000

    def __getitem__(self, i):
        if i % 64 == 0:
            n = 100
        else:
            n = 1
Sylvain Gugger's avatar
Sylvain Gugger committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        return "This is a test" * n
```

This is a occasional very long sentence compared to the other. In that case, the **whole** batch will need to be 400
tokens long, so the whole batch will be [64, 400] instead of [64, 4], leading to the high slowdown. Even worse, on
bigger batches, the program simply crashes.


```
------------------------------
Streaming no batching
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 1000/1000 [00:05<00:00, 183.69it/s]
------------------------------
Streaming batch_size=8
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 1000/1000 [00:03<00:00, 265.74it/s]
------------------------------
Streaming batch_size=64
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 1000/1000 [00:26<00:00, 37.80it/s]
------------------------------
Streaming batch_size=256
  0%|                                                                                 | 0/1000 [00:00<?, ?it/s]
Traceback (most recent call last):
  File "/home/nicolas/src/transformers/test.py", line 42, in <module>
229
    for out in tqdm(pipe(dataset, batch_size=256), total=len(dataset)):
Sylvain Gugger's avatar
Sylvain Gugger committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
....
    q = q / math.sqrt(dim_per_head)  # (bs, n_heads, q_length, dim_per_head)
RuntimeError: CUDA out of memory. Tried to allocate 376.00 MiB (GPU 0; 3.95 GiB total capacity; 1.72 GiB already allocated; 354.88 MiB free; 2.46 GiB reserved in total by PyTorch)
```

There are no good (general) solutions for this problem, and your mileage may vary depending on your use cases. Rule of
thumb:

For users, a rule of thumb is:

- **Measure performance on your load, with your hardware. Measure, measure, and keep measuring. Real numbers are the
  only way to go.**
- If you are latency constrained (live product doing inference), don't batch
- If you are using CPU, don't batch.
- If you are using throughput (you want to run your model on a bunch of static data), on GPU, then:

  - If you have no clue about the size of the sequence_length ("natural" data), by default don't batch, measure and
    try tentatively to add it, add OOM checks to recover when it will fail (and it will at some point if you don't
    control the sequence_length.)
  - If your sequence_length is super regular, then batching is more likely to be VERY interesting, measure and push
    it until you get OOMs.
  - The larger the GPU the more likely batching is going to be more interesting
- As soon as you enable batching, make sure you can handle OOMs nicely.

254
255
256
## Pipeline chunk batching

`zero-shot-classification` and `question-answering` are slightly specific in the sense, that a single input might yield
Kamal Raj's avatar
Kamal Raj committed
257
multiple forward pass of a model. Under normal circumstances, this would yield issues with `batch_size` argument.
258
259
260
261
262
263
264
265

In order to circumvent this issue, both of these pipelines are a bit specific, they are `ChunkPipeline` instead of
regular `Pipeline`. In short:


```python
preprocessed = pipe.preprocess(inputs)
model_outputs = pipe.forward(preprocessed)
Kamal Raj's avatar
Kamal Raj committed
266
outputs = pipe.postprocess(model_outputs)
267
268
269
270
271
272
273
274
275
276
```

Now becomes:


```python
all_model_outputs = []
for preprocessed in pipe.preprocess(inputs):
    model_outputs = pipe.forward(preprocessed)
    all_model_outputs.append(model_outputs)
Kamal Raj's avatar
Kamal Raj committed
277
outputs = pipe.postprocess(all_model_outputs)
278
279
280
281
282
283
284
```

This should be very transparent to your code because the pipelines are used in
the same way.

This is a simplified view, since the pipeline can handle automatically the batch to ! Meaning you don't have to care
about how many forward passes you inputs are actually going to trigger, you can optimize the `batch_size`
Kamal Raj's avatar
Kamal Raj committed
285
independently of the inputs. The caveats from the previous section still apply.
286

Sylvain Gugger's avatar
Sylvain Gugger committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
## Pipeline custom code

If you want to override a specific pipeline.

Don't hesitate to create an issue for your task at hand, the goal of the pipeline is to be easy to use and support most
cases, so `transformers` could maybe support your use case.


If you want to try simply you can:

- Subclass your pipeline of choice

```python
class MyPipeline(TextClassificationPipeline):
Sylvain Gugger's avatar
Sylvain Gugger committed
301
302
    def postprocess():
        # Your code goes here
Sylvain Gugger's avatar
Sylvain Gugger committed
303
        scores = scores * 100
Sylvain Gugger's avatar
Sylvain Gugger committed
304
305
        # And here

Sylvain Gugger's avatar
Sylvain Gugger committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

my_pipeline = MyPipeline(model=model, tokenizer=tokenizer, ...)
# or if you use *pipeline* function, then:
my_pipeline = pipeline(model="xxxx", pipeline_class=MyPipeline)
```

That should enable you to do all the custom code you want.


## Implementing a pipeline

[Implementing a new pipeline](../add_new_pipeline)

## The task specific pipelines


### AudioClassificationPipeline

[[autodoc]] AudioClassificationPipeline
    - __call__
    - all

### AutomaticSpeechRecognitionPipeline

[[autodoc]] AutomaticSpeechRecognitionPipeline
    - __call__
    - all

### ConversationalPipeline

[[autodoc]] Conversation

[[autodoc]] ConversationalPipeline
    - __call__
    - all

### FeatureExtractionPipeline

[[autodoc]] FeatureExtractionPipeline
    - __call__
    - all

### FillMaskPipeline

[[autodoc]] FillMaskPipeline
    - __call__
    - all

### ImageClassificationPipeline

[[autodoc]] ImageClassificationPipeline
    - __call__
    - all

### ImageSegmentationPipeline

[[autodoc]] ImageSegmentationPipeline
    - __call__
    - all

### NerPipeline

[[autodoc]] NerPipeline

See [`TokenClassificationPipeline`] for all details.

### ObjectDetectionPipeline

[[autodoc]] ObjectDetectionPipeline
    - __call__
    - all

### QuestionAnsweringPipeline

[[autodoc]] QuestionAnsweringPipeline
    - __call__
    - all

### SummarizationPipeline

[[autodoc]] SummarizationPipeline
    - __call__
    - all

### TableQuestionAnsweringPipeline

[[autodoc]] TableQuestionAnsweringPipeline
    - __call__

### TextClassificationPipeline

[[autodoc]] TextClassificationPipeline
    - __call__
    - all

### TextGenerationPipeline

[[autodoc]] TextGenerationPipeline
    - __call__
    - all

### Text2TextGenerationPipeline

[[autodoc]] Text2TextGenerationPipeline
    - __call__
    - all

### TokenClassificationPipeline

[[autodoc]] TokenClassificationPipeline
    - __call__
    - all

### TranslationPipeline

[[autodoc]] TranslationPipeline
    - __call__
    - all

### ZeroShotClassificationPipeline

[[autodoc]] ZeroShotClassificationPipeline
    - __call__
    - all

## Parent class: `Pipeline`

[[autodoc]] Pipeline