run_ner.py 22.8 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
Julien Chaumond's avatar
Julien Chaumond committed
25
from dataclasses import dataclass, field
26
from typing import Optional
27

28
import datasets
29
import numpy as np
30
from datasets import ClassLabel, load_dataset, load_metric
Aymeric Augustin's avatar
Aymeric Augustin committed
31

32
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
33
from transformers import (
34
35
36
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
37
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
38
    HfArgumentParser,
39
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
40
41
42
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
43
)
44
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version
46
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
47
48


49
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
50
check_min_version("4.9.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
51

52
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
53

54
55
56
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
57
58
59
60
61
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
62

Julien Chaumond's avatar
Julien Chaumond committed
63
64
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
65
    )
Julien Chaumond's avatar
Julien Chaumond committed
66
67
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
68
    )
Julien Chaumond's avatar
Julien Chaumond committed
69
70
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
71
    )
Julien Chaumond's avatar
Julien Chaumond committed
72
    cache_dir: Optional[str] = field(
73
74
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
75
    )
76
77
78
79
80
81
82
83
84
85
86
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
87
88


Julien Chaumond's avatar
Julien Chaumond committed
89
90
91
92
93
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
94

95
96
97
98
99
100
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
101
    )
102
103
104
105
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
106
        default=None,
107
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
108
    )
109
110
111
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
112
    )
113
114
115
116
117
118
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
Julien Chaumond's avatar
Julien Chaumond committed
119
120
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
121
    )
122
123
124
125
126
127
128
129
130
131
132
133
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
134
135
136
137
138
139
140
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
141
    max_eval_samples: Optional[int] = field(
142
143
        default=None,
        metadata={
144
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
145
146
147
            "value if set."
        },
    )
148
    max_predict_samples: Optional[int] = field(
149
150
        default=None,
        metadata={
151
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
152
153
154
            "value if set."
        },
    )
155
156
157
158
159
160
161
    label_all_tokens: bool = field(
        default=False,
        metadata={
            "help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
            "one (in which case the other tokens will have a padding index)."
        },
    )
162
163
164
165
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
166
167
168
169
170
171
172
173
174
175
176
177

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
178

Julien Chaumond's avatar
Julien Chaumond committed
179
180
181
182
183
184
185

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
186
187
188
189
190
191
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
192
193

    # Setup logging
194
    logging.basicConfig(
195
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
196
        datefmt="%m/%d/%Y %H:%M:%S",
197
        handlers=[logging.StreamHandler(sys.stdout)],
198
    )
199
200
201
202
203
204
205

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
206
207

    # Log on each process the small summary:
208
    logger.warning(
209
210
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
211
    )
212
    logger.info(f"Training/evaluation parameters {training_args}")
213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

229
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
230
    set_seed(training_args.seed)
231

232
233
234
235
236
237
238
239
240
241
242
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
243
244
245
        raw_datasets = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir
        )
246
247
248
249
250
251
252
253
254
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
255
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
256
257
258
259
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
260
261
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
262
    else:
263
264
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features
265
266
267
268
269
270
271
272
273
274
275
276
277
278

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]
279

Sylvain Gugger's avatar
Sylvain Gugger committed
280
281
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
282
283
284
285
286
287
288
289
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

Sylvain Gugger's avatar
Sylvain Gugger committed
290
291
292
293
294
    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
295
        label_list = get_label_list(raw_datasets["train"][label_column_name])
Sylvain Gugger's avatar
Sylvain Gugger committed
296
        label_to_id = {l: i for i, l in enumerate(label_list)}
297
    num_labels = len(label_list)
298
299

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
300
301
302
303
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
304
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
305
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
306
        num_labels=num_labels,
307
308
        label2id=label_to_id,
        id2label={i: l for l, i in label_to_id.items()},
309
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
310
        cache_dir=model_args.cache_dir,
311
312
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
313
    )
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

334
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
335
336
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
337
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
338
        cache_dir=model_args.cache_dir,
339
340
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
341
    )
342

343
344
345
346
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
347
            "at https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet this "
348
349
350
            "requirement"
        )

351
352
353
354
355
356
357
358
359
360
361
362
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
363
        )
364
        labels = []
365
366
367
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
368
            label_ids = []
369
370
371
372
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
373
                    label_ids.append(-100)
374
375
376
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
377
378
379
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
380
381
                    label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
                previous_word_idx = word_idx
382
383
384
385
386

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

387
    if training_args.do_train:
388
        if "train" not in raw_datasets:
389
            raise ValueError("--do_train requires a train dataset")
390
        train_dataset = raw_datasets["train"]
391
392
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
393
394
395
396
397
398
399
400
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
401
402

    if training_args.do_eval:
403
        if "validation" not in raw_datasets:
404
            raise ValueError("--do_eval requires a validation dataset")
405
        eval_dataset = raw_datasets["validation"]
406
407
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
408
409
410
411
412
413
414
415
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
416
417

    if training_args.do_predict:
418
        if "test" not in raw_datasets:
419
            raise ValueError("--do_predict requires a test dataset")
420
        predict_dataset = raw_datasets["test"]
421
422
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
423
424
425
426
427
428
429
430
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
Julien Chaumond's avatar
Julien Chaumond committed
431

432
    # Data collator
433
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
434

435
    # Metrics
436
437
    metric = load_metric("seqeval")

438
439
440
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
441

442
443
444
445
446
447
448
449
450
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
451

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
470
471
472
473
474

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
475
476
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
477
478
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
479
480
        compute_metrics=compute_metrics,
    )
481
482

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
483
    if training_args.do_train:
484
485
486
487
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
488
489
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
490
        metrics = train_result.metrics
491
        trainer.save_model()  # Saves the tokenizer too for easy upload
492

493
494
495
496
497
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

498
499
500
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
501

502
    # Evaluation
503
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
504
505
        logger.info("*** Evaluate ***")

506
507
        metrics = trainer.evaluate()

508
509
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
510

511
512
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
513
514

    # Predict
515
    if training_args.do_predict:
516
517
        logger.info("*** Predict ***")

518
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
519
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
520

521
522
523
524
525
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
526

527
528
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
529

530
        # Save predictions
531
        output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
532
        if trainer.is_world_process_zero():
533
            with open(output_predictions_file, "w") as writer:
534
535
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
536

Sylvain Gugger's avatar
Sylvain Gugger committed
537
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
538
        kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
Sylvain Gugger's avatar
Sylvain Gugger committed
539
540
541
542
543
544
545
546
547
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name

        trainer.push_to_hub(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
548

549

550
551
552
553
554
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


555
556
if __name__ == "__main__":
    main()