test_modeling_bert.py 31.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lysandre Debut's avatar
Lysandre Debut committed
15
16
import os
import tempfile
17
18
import unittest

19
from transformers import AutoTokenizer, BertConfig, is_torch_available
20
from transformers.models.auto import get_values
21
22
23
24
25
26
27
28
from transformers.testing_utils import (
    CaptureLogger,
    require_torch,
    require_torch_accelerator,
    require_torch_sdpa,
    slow,
    torch_device,
)
thomwolf's avatar
thomwolf committed
29

30
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
31
32
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
33
from ...test_pipeline_mixin import PipelineTesterMixin
thomwolf's avatar
thomwolf committed
34

Aymeric Augustin's avatar
Aymeric Augustin committed
35

36
if is_torch_available():
37
38
    import torch

39
    from transformers import (
40
        MODEL_FOR_PRETRAINING_MAPPING,
41
        BertForMaskedLM,
42
        BertForMultipleChoice,
43
44
45
46
47
        BertForNextSentencePrediction,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
        BertForTokenClassification,
48
49
        BertLMHeadModel,
        BertModel,
50
        logging,
51
    )
thomwolf's avatar
thomwolf committed
52

thomwolf's avatar
thomwolf committed
53

54
55
56
57
58
59
60
61
62
63
64
65
class BertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
66
        num_hidden_layers=2,
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
108
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
109
110
111
112
113
114
115
116
117
118
119
120
121

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

122
123
124
125
126
127
128
129
130
        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        """
        Returns a tiny configuration by default.
        """
        return BertConfig(
131
132
133
134
135
136
137
138
139
140
141
142
143
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )
thomwolf's avatar
thomwolf committed
144

145
    def prepare_config_and_inputs_for_decoder(self):
146
        (
147
148
149
150
151
152
153
154
155
156
157
158
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
thomwolf's avatar
thomwolf committed
159

160
        return (
161
162
163
164
165
166
167
168
169
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
170
171
        )

172
    def create_and_check_model(
173
174
175
176
177
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
178
179
180
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
181
182
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
183

184
    def create_and_check_model_as_decoder(
185
186
187
188
189
190
191
192
193
194
195
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
196
        config.add_cross_attention = True
197
198
199
        model = BertModel(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
200
        result = model(
201
202
203
204
205
206
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
207
        result = model(
208
209
210
211
212
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
213
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
Stas Bekman's avatar
Stas Bekman committed
214
215
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
216

217
    def create_and_check_for_causal_lm(
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = BertLMHeadModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
232
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
233
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
234

235
    def create_and_check_for_masked_lm(
236
237
238
239
240
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
241
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
242
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
243

244
    def create_and_check_model_for_causal_lm_as_decoder(
245
246
247
248
249
250
251
252
253
254
255
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
256
        config.add_cross_attention = True
257
        model = BertLMHeadModel(config=config)
258
259
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
260
        result = model(
261
262
263
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
264
            labels=token_labels,
265
266
267
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
268
        result = model(
269
270
271
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
272
            labels=token_labels,
273
274
            encoder_hidden_states=encoder_hidden_states,
        )
Stas Bekman's avatar
Stas Bekman committed
275
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
276

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = BertLMHeadModel(config=config).to(torch_device).eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

337
    def create_and_check_for_next_sequence_prediction(
338
339
340
341
342
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForNextSentencePrediction(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
343
        result = model(
Lysandre's avatar
Lysandre committed
344
345
346
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
347
            labels=sequence_labels,
348
        )
Stas Bekman's avatar
Stas Bekman committed
349
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
350

351
    def create_and_check_for_pretraining(
352
353
354
355
356
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
357
        result = model(
358
359
360
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
361
            labels=token_labels,
362
363
            next_sentence_label=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
364
365
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
366

367
    def create_and_check_for_question_answering(
368
369
370
371
372
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
373
        result = model(
374
375
376
377
378
379
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
380
381
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
382

383
    def create_and_check_for_sequence_classification(
384
385
386
387
388
389
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
390
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
391
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
392

393
    def create_and_check_for_token_classification(
394
395
396
397
398
399
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
400
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
401
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
402

403
    def create_and_check_for_multiple_choice(
404
405
406
407
408
409
410
411
412
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = BertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
413
        result = model(
414
415
416
417
418
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
419
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
420
421
422
423

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
424
425
426
427
428
429
430
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
431
432
433
434
435
436
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
437
class BertModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
438
439
440
    all_model_classes = (
        (
            BertModel,
441
            BertLMHeadModel,
442
            BertForMaskedLM,
443
            BertForMultipleChoice,
444
445
446
447
448
449
450
451
452
            BertForNextSentencePrediction,
            BertForPreTraining,
            BertForQuestionAnswering,
            BertForSequenceClassification,
            BertForTokenClassification,
        )
        if is_torch_available()
        else ()
    )
453
    all_generative_model_classes = (BertLMHeadModel,) if is_torch_available() else ()
454
455
456
457
458
459
460
461
462
463
464
465
466
    pipeline_model_mapping = (
        {
            "feature-extraction": BertModel,
            "fill-mask": BertForMaskedLM,
            "question-answering": BertForQuestionAnswering,
            "text-classification": BertForSequenceClassification,
            "text-generation": BertLMHeadModel,
            "token-classification": BertForTokenClassification,
            "zero-shot": BertForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
467
    fx_compatible = True
468
    model_split_percents = [0.5, 0.8, 0.9]
thomwolf's avatar
thomwolf committed
469

470
471
472
473
474
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
475
            if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
476
477
478
479
480
481
482
483
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
                inputs_dict["next_sentence_label"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

thomwolf's avatar
thomwolf committed
484
    def setUp(self):
485
        self.model_tester = BertModelTester(self)
thomwolf's avatar
thomwolf committed
486
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)
thomwolf's avatar
thomwolf committed
487
488

    def test_config(self):
thomwolf's avatar
thomwolf committed
489
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
490

491
    def test_model(self):
thomwolf's avatar
thomwolf committed
492
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
493
        self.model_tester.create_and_check_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
494

495
496
497
498
499
500
    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

501
    def test_model_as_decoder(self):
502
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
503
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
504

505
506
507
508
509
    @unittest.skip(reason="Generate needs input ids")
    def test_inputs_embeds_matches_input_ids_with_generate(self):
        # generate only works with input ids for bertforcausalLM
        pass

510
    def test_model_as_decoder_with_default_input_mask(self):
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

526
        self.model_tester.create_and_check_model_as_decoder(
527
528
529
530
531
532
533
534
535
536
537
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

538
539
    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
540
        self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
541

thomwolf's avatar
thomwolf committed
542
543
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
544
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
thomwolf's avatar
thomwolf committed
545

546
    def test_for_causal_lm_decoder(self):
547
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
548
        self.model_tester.create_and_check_model_for_causal_lm_as_decoder(*config_and_inputs)
549

550
551
552
553
    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

554
555
556
557
558
    def test_decoder_model_past_with_large_inputs_relative_pos_emb(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        config_and_inputs[0].position_embedding_type = "relative_key"
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

thomwolf's avatar
thomwolf committed
559
560
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
561
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
thomwolf's avatar
thomwolf committed
562

thomwolf's avatar
thomwolf committed
563
564
    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
565
        self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs)
thomwolf's avatar
thomwolf committed
566

thomwolf's avatar
thomwolf committed
567
568
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
569
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
thomwolf's avatar
thomwolf committed
570

thomwolf's avatar
thomwolf committed
571
572
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
573
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
thomwolf's avatar
thomwolf committed
574

thomwolf's avatar
thomwolf committed
575
576
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
577
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
578

thomwolf's avatar
thomwolf committed
579
580
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
581
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
582

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    def test_for_warning_if_padding_and_no_attention_mask(self):
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.model_tester.prepare_config_and_inputs()

        # Set pad tokens in the input_ids
        input_ids[0, 0] = config.pad_token_id

        # Check for warnings if the attention_mask is missing.
        logger = logging.get_logger("transformers.modeling_utils")
599
600
601
        # clear cache so we can test the warning is emitted (from `warning_once`).
        logger.warning_once.cache_clear()

602
603
604
605
606
607
608
        with CaptureLogger(logger) as cl:
            model = BertModel(config=config)
            model.to(torch_device)
            model.eval()
            model(input_ids, attention_mask=None, token_type_ids=token_type_ids)
        self.assertIn("We strongly recommend passing in an `attention_mask`", cl.out)

609
    @slow
thomwolf's avatar
thomwolf committed
610
    def test_model_from_pretrained(self):
611
612
613
        model_name = "google-bert/bert-base-uncased"
        model = BertModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
614

Lysandre Debut's avatar
Lysandre Debut committed
615
    @slow
616
    @require_torch_accelerator
Lysandre Debut's avatar
Lysandre Debut committed
617
618
619
620
621
    def test_torchscript_device_change(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            # BertForMultipleChoice behaves incorrectly in JIT environments.
            if model_class == BertForMultipleChoice:
amyeroberts's avatar
amyeroberts committed
622
                self.skipTest(reason="BertForMultipleChoice behaves incorrectly in JIT environments.")
Lysandre Debut's avatar
Lysandre Debut committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636

            config.torchscript = True
            model = model_class(config=config)

            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            traced_model = torch.jit.trace(
                model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))
            )

            with tempfile.TemporaryDirectory() as tmp:
                torch.jit.save(traced_model, os.path.join(tmp, "bert.pt"))
                loaded = torch.jit.load(os.path.join(tmp, "bert.pt"), map_location=torch_device)
                loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device))

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    # This test was copied from the common test_eager_matches_sdpa_generate(), but without low_cpu_mem_usage=True.
    # TODO: Remove this and use the parent method (in common tests) once BERT supports low_cpu_mem_usage=True.
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
        max_new_tokens = 30

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test")

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))

                model_sdpa = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    # low_cpu_mem_usage=True,
                ).to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    # low_cpu_mem_usage=True,
                    attn_implementation="eager",
                ).to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
                        has_sdpa = True
                        break
                if not has_sdpa:
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # Just test that a large cache works as expected
                res_eager = model_eager.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                res_sdpa = model_sdpa.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                self.assertTrue(torch.allclose(res_eager, res_sdpa))

710
711
712
713
714

@require_torch
class BertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head_absolute_embedding(self):
715
        model = BertModel.from_pretrained("google-bert/bert-base-uncased")
716
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
717
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
718
719
        with torch.no_grad():
            output = model(input_ids, attention_mask=attention_mask)[0]
720
721
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
722
        expected_slice = torch.tensor([[[0.4249, 0.1008, 0.7531], [0.3771, 0.1188, 0.7467], [0.4152, 0.1098, 0.7108]]])
723

724
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
725
726
727
728
729

    @slow
    def test_inference_no_head_relative_embedding_key(self):
        model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
730
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
731
732
        with torch.no_grad():
            output = model(input_ids, attention_mask=attention_mask)[0]
733
734
735
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
736
            [[[0.0756, 0.3142, -0.5128], [0.3761, 0.3462, -0.5477], [0.2052, 0.3760, -0.1240]]]
737
738
        )

739
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
740
741
742
743
744

    @slow
    def test_inference_no_head_relative_embedding_key_query(self):
        model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key-query")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
745
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
746
747
        with torch.no_grad():
            output = model(input_ids, attention_mask=attention_mask)[0]
748
749
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
750
751
752
        expected_slice = torch.tensor(
            [[[0.6496, 0.3784, 0.8203], [0.8148, 0.5656, 0.2636], [-0.0681, 0.5597, 0.7045]]]
        )
753

754
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

    def test_sdpa_ignored_mask(self):
        pkv = []

        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel", attn_implementation="eager")
        model_sdpa = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel", attn_implementation="sdpa")

        model = model.eval()
        model_sdpa = model_sdpa.eval()

        for _ in range(model.config.num_hidden_layers):
            num_heads = model.config.num_attention_heads
            head_dim = model.config.hidden_size // model.config.num_attention_heads
            pkv.append([torch.rand(1, num_heads, 3, head_dim), torch.rand(1, num_heads, 3, head_dim)])

        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
        inp = tokenizer("I am in Paris and", return_tensors="pt")

        del inp["attention_mask"]

        with torch.no_grad():
            res_eager = model(**inp)
            res_sdpa = model_sdpa(**inp)
            self.assertTrue(
                torch.allclose(res_eager.last_hidden_state, res_sdpa.last_hidden_state, atol=1e-5, rtol=1e-4)
            )

            # Case where query length != kv_length.
            res_eager = model(**inp, past_key_values=pkv)
            res_sdpa = model_sdpa(**inp, past_key_values=pkv)
            self.assertTrue(
                torch.allclose(res_eager.last_hidden_state, res_sdpa.last_hidden_state, atol=1e-5, rtol=1e-4)
            )