test_modeling_bert.py 26.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lysandre Debut's avatar
Lysandre Debut committed
15
16
import os
import tempfile
17
18
import unittest

19
from transformers import BertConfig, is_torch_available
20
from transformers.models.auto import get_values
21
from transformers.testing_utils import CaptureLogger, require_torch, require_torch_gpu, slow, torch_device
thomwolf's avatar
thomwolf committed
22

23
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
26
from ...test_pipeline_mixin import PipelineTesterMixin
thomwolf's avatar
thomwolf committed
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_torch_available():
30
31
    import torch

32
    from transformers import (
33
        MODEL_FOR_PRETRAINING_MAPPING,
34
        BertForMaskedLM,
35
        BertForMultipleChoice,
36
37
38
39
40
        BertForNextSentencePrediction,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
        BertForTokenClassification,
41
42
        BertLMHeadModel,
        BertModel,
43
        logging,
44
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
45
    from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
46

thomwolf's avatar
thomwolf committed
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
class BertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
102
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
103
104
105
106
107
108
109
110
111
112
113
114
115

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

116
117
118
119
120
121
122
123
124
        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        """
        Returns a tiny configuration by default.
        """
        return BertConfig(
125
126
127
128
129
130
131
132
133
134
135
136
137
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )
thomwolf's avatar
thomwolf committed
138

139
    def prepare_config_and_inputs_for_decoder(self):
140
        (
141
142
143
144
145
146
147
148
149
150
151
152
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
thomwolf's avatar
thomwolf committed
153

154
        return (
155
156
157
158
159
160
161
162
163
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
164
165
        )

166
    def create_and_check_model(
167
168
169
170
171
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
174
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
175
176
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
177

178
    def create_and_check_model_as_decoder(
179
180
181
182
183
184
185
186
187
188
189
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
190
        config.add_cross_attention = True
191
192
193
        model = BertModel(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
194
        result = model(
195
196
197
198
199
200
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
201
        result = model(
202
203
204
205
206
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
207
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
Stas Bekman's avatar
Stas Bekman committed
208
209
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
210

211
    def create_and_check_for_causal_lm(
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = BertLMHeadModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
226
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
227
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
228

229
    def create_and_check_for_masked_lm(
230
231
232
233
234
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
235
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
236
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
237

238
    def create_and_check_model_for_causal_lm_as_decoder(
239
240
241
242
243
244
245
246
247
248
249
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
250
        config.add_cross_attention = True
251
        model = BertLMHeadModel(config=config)
252
253
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
254
        result = model(
255
256
257
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
258
            labels=token_labels,
259
260
261
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
262
        result = model(
263
264
265
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
266
            labels=token_labels,
267
268
            encoder_hidden_states=encoder_hidden_states,
        )
Stas Bekman's avatar
Stas Bekman committed
269
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = BertLMHeadModel(config=config).to(torch_device).eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

331
    def create_and_check_for_next_sequence_prediction(
332
333
334
335
336
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForNextSentencePrediction(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
337
        result = model(
Lysandre's avatar
Lysandre committed
338
339
340
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
341
            labels=sequence_labels,
342
        )
Stas Bekman's avatar
Stas Bekman committed
343
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
344

345
    def create_and_check_for_pretraining(
346
347
348
349
350
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
351
        result = model(
352
353
354
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
355
            labels=token_labels,
356
357
            next_sentence_label=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
358
359
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
360

361
    def create_and_check_for_question_answering(
362
363
364
365
366
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
367
        result = model(
368
369
370
371
372
373
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
374
375
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
376

377
    def create_and_check_for_sequence_classification(
378
379
380
381
382
383
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
384
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
385
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
386

387
    def create_and_check_for_token_classification(
388
389
390
391
392
393
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
394
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
395
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
396

397
    def create_and_check_for_multiple_choice(
398
399
400
401
402
403
404
405
406
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = BertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
407
        result = model(
408
409
410
411
412
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
413
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
414
415
416
417

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
418
419
420
421
422
423
424
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
425
426
427
428
429
430
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
431
class BertModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
432
433
434
    all_model_classes = (
        (
            BertModel,
435
            BertLMHeadModel,
436
            BertForMaskedLM,
437
            BertForMultipleChoice,
438
439
440
441
442
443
444
445
446
            BertForNextSentencePrediction,
            BertForPreTraining,
            BertForQuestionAnswering,
            BertForSequenceClassification,
            BertForTokenClassification,
        )
        if is_torch_available()
        else ()
    )
447
    all_generative_model_classes = (BertLMHeadModel,) if is_torch_available() else ()
448
449
450
451
452
453
454
455
456
457
458
459
460
    pipeline_model_mapping = (
        {
            "feature-extraction": BertModel,
            "fill-mask": BertForMaskedLM,
            "question-answering": BertForQuestionAnswering,
            "text-classification": BertForSequenceClassification,
            "text-generation": BertLMHeadModel,
            "token-classification": BertForTokenClassification,
            "zero-shot": BertForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
461
    fx_compatible = True
thomwolf's avatar
thomwolf committed
462

463
464
465
466
467
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
468
            if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
469
470
471
472
473
474
475
476
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
                inputs_dict["next_sentence_label"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

thomwolf's avatar
thomwolf committed
477
    def setUp(self):
478
        self.model_tester = BertModelTester(self)
thomwolf's avatar
thomwolf committed
479
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)
thomwolf's avatar
thomwolf committed
480
481

    def test_config(self):
thomwolf's avatar
thomwolf committed
482
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
483

484
    def test_model(self):
thomwolf's avatar
thomwolf committed
485
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
486
        self.model_tester.create_and_check_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
487

488
489
490
491
492
493
    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

494
    def test_model_as_decoder(self):
495
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
496
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
497

498
    def test_model_as_decoder_with_default_input_mask(self):
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

514
        self.model_tester.create_and_check_model_as_decoder(
515
516
517
518
519
520
521
522
523
524
525
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

526
527
    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
528
        self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
529

thomwolf's avatar
thomwolf committed
530
531
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
532
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
thomwolf's avatar
thomwolf committed
533

534
    def test_for_causal_lm_decoder(self):
535
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
536
        self.model_tester.create_and_check_model_for_causal_lm_as_decoder(*config_and_inputs)
537

538
539
540
541
    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

542
543
544
545
546
    def test_decoder_model_past_with_large_inputs_relative_pos_emb(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        config_and_inputs[0].position_embedding_type = "relative_key"
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

thomwolf's avatar
thomwolf committed
547
548
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
549
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
thomwolf's avatar
thomwolf committed
550

thomwolf's avatar
thomwolf committed
551
552
    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
553
        self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs)
thomwolf's avatar
thomwolf committed
554

thomwolf's avatar
thomwolf committed
555
556
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
557
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
thomwolf's avatar
thomwolf committed
558

thomwolf's avatar
thomwolf committed
559
560
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
561
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
thomwolf's avatar
thomwolf committed
562

thomwolf's avatar
thomwolf committed
563
564
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
565
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
566

thomwolf's avatar
thomwolf committed
567
568
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
569
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
570

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
    def test_for_warning_if_padding_and_no_attention_mask(self):
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.model_tester.prepare_config_and_inputs()

        # Set pad tokens in the input_ids
        input_ids[0, 0] = config.pad_token_id

        # Check for warnings if the attention_mask is missing.
        logger = logging.get_logger("transformers.modeling_utils")
        with CaptureLogger(logger) as cl:
            model = BertModel(config=config)
            model.to(torch_device)
            model.eval()
            model(input_ids, attention_mask=None, token_type_ids=token_type_ids)
        self.assertIn("We strongly recommend passing in an `attention_mask`", cl.out)

594
    @slow
thomwolf's avatar
thomwolf committed
595
    def test_model_from_pretrained(self):
596
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
597
            model = BertModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
598
            self.assertIsNotNone(model)
599

Lysandre Debut's avatar
Lysandre Debut committed
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
    @slow
    @require_torch_gpu
    def test_torchscript_device_change(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            # BertForMultipleChoice behaves incorrectly in JIT environments.
            if model_class == BertForMultipleChoice:
                return

            config.torchscript = True
            model = model_class(config=config)

            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            traced_model = torch.jit.trace(
                model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))
            )

            with tempfile.TemporaryDirectory() as tmp:
                torch.jit.save(traced_model, os.path.join(tmp, "bert.pt"))
                loaded = torch.jit.load(os.path.join(tmp, "bert.pt"), map_location=torch_device)
                loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device))

622
623
624
625
626
627
628

@require_torch
class BertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head_absolute_embedding(self):
        model = BertModel.from_pretrained("bert-base-uncased")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
629
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
630
631
        with torch.no_grad():
            output = model(input_ids, attention_mask=attention_mask)[0]
632
633
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
634
        expected_slice = torch.tensor([[[0.4249, 0.1008, 0.7531], [0.3771, 0.1188, 0.7467], [0.4152, 0.1098, 0.7108]]])
635

636
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
637
638
639
640
641

    @slow
    def test_inference_no_head_relative_embedding_key(self):
        model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
642
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
643
644
        with torch.no_grad():
            output = model(input_ids, attention_mask=attention_mask)[0]
645
646
647
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
648
            [[[0.0756, 0.3142, -0.5128], [0.3761, 0.3462, -0.5477], [0.2052, 0.3760, -0.1240]]]
649
650
        )

651
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
652
653
654
655
656

    @slow
    def test_inference_no_head_relative_embedding_key_query(self):
        model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key-query")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
657
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
658
659
        with torch.no_grad():
            output = model(input_ids, attention_mask=attention_mask)[0]
660
661
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
662
663
664
        expected_slice = torch.tensor(
            [[[0.6496, 0.3784, 0.8203], [0.8148, 0.5656, 0.2636], [-0.0681, 0.5597, 0.7045]]]
        )
665

666
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))