test_modeling_common.py 36.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
Aymeric Augustin's avatar
Aymeric Augustin committed
17
import logging
18
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import random
20
import tempfile
thomwolf's avatar
thomwolf committed
21
22
import unittest

23
from transformers import is_torch_available
24

25
from .utils import require_torch, slow, torch_device
26

Aymeric Augustin's avatar
Aymeric Augustin committed
27

28
if is_torch_available():
thomwolf's avatar
thomwolf committed
29
    import torch
30
    import numpy as np
thomwolf's avatar
thomwolf committed
31

32
33
34
35
36
37
38
    from transformers import (
        AdaptiveEmbedding,
        PretrainedConfig,
        PreTrainedModel,
        BertModel,
        BertConfig,
        BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
39
        top_k_top_p_filtering,
40
    )
thomwolf's avatar
thomwolf committed
41

42

43
44
45
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
46
        if "_range" in key or "_std" in key or "initializer_factor" in key:
47
48
49
            setattr(configs_no_init, key, 0.0)
    return configs_no_init

thomwolf's avatar
thomwolf committed
50

51
52
53
54
55
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
56
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
57
58
59
60
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
61
    test_missing_keys = True
62
63
    is_encoder_decoder = False

Patrick von Platen's avatar
Patrick von Platen committed
64
    def test_save_load(self):
65
66
67
68
69
70
71
72
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
73
            out_2 = outputs[0].cpu().numpy()
74
            out_2[np.isnan(out_2)] = 0
75

76
            with tempfile.TemporaryDirectory() as tmpdirname:
77
78
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
79
                model.to(torch_device)
80
                with torch.no_grad():
81
                    after_outputs = model(**inputs_dict)
thomwolf's avatar
thomwolf committed
82

83
84
85
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
86
87
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
88

Patrick von Platen's avatar
Patrick von Platen committed
89
    def test_initialization(self):
90
91
92
93
94
95
96
97
98
99
100
101
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
                        param.data.mean().item(),
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
102

Patrick von Platen's avatar
Patrick von Platen committed
103
    def test_determinism(self):
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                first = model(**inputs_dict)[0]
                second = model(**inputs_dict)[0]
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

Patrick von Platen's avatar
Patrick von Platen committed
120
    def test_attention_outputs(self):
121
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
sshleifer's avatar
sshleifer committed
122
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
123
124
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
125
126
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

        for model_class in self.all_model_classes:
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
143
            )
144
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
145

146
            if self.is_encoder_decoder:
147
                correct_outlen = 4
Sam Shleifer's avatar
Sam Shleifer committed
148
                decoder_attention_idx = 1
149

150
                if "lm_labels" in inputs_dict:  # loss will come first
Sam Shleifer's avatar
Sam Shleifer committed
151
152
153
154
155
156
                    correct_outlen += 1  # compute loss
                    decoder_attention_idx += 1
                self.assertEqual(out_len, correct_outlen)

                decoder_attentions = outputs[decoder_attention_idx]
                self.assertIsInstance(decoder_attentions, (list, tuple))
157
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
158
                self.assertListEqual(
159
160
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
161
                )
thomwolf's avatar
thomwolf committed
162

163
            # Check attention is always last and order is fine
thomwolf's avatar
thomwolf committed
164
165
            config.output_attentions = True
            config.output_hidden_states = True
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, True)

            self_attentions = outputs[-1]
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )
thomwolf's avatar
thomwolf committed
181

Patrick von Platen's avatar
Patrick von Platen committed
182
    def test_torchscript(self):
183
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
184

185
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
186

Patrick von Platen's avatar
Patrick von Platen committed
187
    def test_torchscript_output_attentions(self):
188
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
189

190
191
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
192

Patrick von Platen's avatar
Patrick von Platen committed
193
    def test_torchscript_output_hidden_state(self):
194
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
195

196
197
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
198

199
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
200
        if not self.test_torchscript:
201
            return
202

203
204
205
206
207
208
209
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = inputs_dict["input_ids"]  # Let's keep only input_ids
thomwolf's avatar
thomwolf committed
210

211
212
213
214
            try:
                traced_gpt2 = torch.jit.trace(model, inputs)
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
215

216
            with tempfile.TemporaryDirectory() as tmp_dir_name:
217
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
218

219
220
221
222
                try:
                    torch.jit.save(traced_gpt2, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
223

224
225
226
227
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
228

229
230
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
231

232
233
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
234

235
236
237
238
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
239

240
            models_equal = True
241
242
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
243
244
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
245

246
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
247

Patrick von Platen's avatar
Patrick von Platen committed
248
249
    def test_headmasking(self):
        if not self.test_head_masking:
250
            return
251

252
253
254
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
255

256
257
258
259
260
261
262
        config.output_attentions = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
263

264
265
266
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
267
                self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device,
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
            inputs = inputs_dict.copy()
            inputs["head_mask"] = head_mask

            outputs = model(**inputs)

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
302
303
    def test_head_pruning(self):
        if not self.test_pruning:
304
305
306
            return

        for model_class in self.all_model_classes:
307
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
308

309
310
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
311

312
313
314
315
316
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
317
318
319
320
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
321
322
323
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
                outputs = model(**inputs_dict)
324

325
            attentions = outputs[-1]
326

327
328
329
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
330

Patrick von Platen's avatar
Patrick von Platen committed
331
332
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
333
            return
LysandreJik's avatar
LysandreJik committed
334

335
        for model_class in self.all_model_classes:
336
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
337
338
339

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
340

341
342
343
344
345
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
346
347
348
349
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
350
            model.prune_heads(heads_to_prune)
351

352
            with tempfile.TemporaryDirectory() as temp_dir_name:
353
354
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
355
                model.to(torch_device)
356

357
358
359
360
361
362
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
363

Patrick von Platen's avatar
Patrick von Platen committed
364
365
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
366
            return
367

368
        for model_class in self.all_model_classes:
369
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
370

371
372
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
373

374
375
            config.output_attentions = True
            config.output_hidden_states = False
376

377
378
379
380
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
381
            config.pruned_heads = heads_to_prune
382

383
384
385
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
386

387
388
389
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
390

391
392
393
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
394

Patrick von Platen's avatar
Patrick von Platen committed
395
396
    def test_head_pruning_integration(self):
        if not self.test_pruning:
397
            return
398

399
        for model_class in self.all_model_classes:
400
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
401

402
403
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
404

405
406
            config.output_attentions = True
            config.output_hidden_states = False
407

408
409
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
410

411
412
413
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
414

415
416
417
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
418

419
420
421
422
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
423

424
            with tempfile.TemporaryDirectory() as temp_dir_name:
425
426
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
427
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
428

429
430
431
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
432

433
434
435
436
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
437

438
439
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
440

441
442
443
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
444

445
446
447
448
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
449

450
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
451

Patrick von Platen's avatar
Patrick von Platen committed
452
    def test_hidden_states_output(self):
453
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
454

455
456
457
458
        for model_class in self.all_model_classes:
            config.output_hidden_states = True
            config.output_attentions = False
            model = model_class(config)
459
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
460
            model.eval()
thomwolf's avatar
thomwolf committed
461
            with torch.no_grad():
462
463
464
465
466
467
468
469
470
471
472
473
474
                outputs = model(**inputs_dict)
            hidden_states = outputs[-1]
            self.assertEqual(model.config.output_attentions, False)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [
                    self.model_tester.encoder_seq_length
                    if hasattr(self.model_tester, "encoder_seq_length")
                    else self.model_tester.seq_length,
                    self.model_tester.hidden_size,
                ],
475
            )
thomwolf's avatar
thomwolf committed
476

Patrick von Platen's avatar
Patrick von Platen committed
477
    def test_resize_tokens_embeddings(self):
478
        (original_config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
479
        if not self.test_resize_embeddings:
480
481
482
483
484
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
485
            model.to(torch_device)
486
487
488
489
490
491
492
493
494
495
496

            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
497
498
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**inputs_dict)
499
500
501
502
503
504
505

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

506
507
508
509
510
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            model(**inputs_dict)

511
512
513
514
515
516
517
518
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
519
    def test_model_common_attributes(self):
520
521
522
523
524
525
526
527
528
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

529
    def test_correct_missing_keys(self):
530
531
        if not self.test_missing_keys:
            return
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            params_not_tied = list(model_not_tied.parameters())

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())

            # Check that the embedding layer and decoding layer are the same in size and in value
            self.assertGreater(len(params_not_tied), len(params_tied))
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertGreater(len(params_not_tied), len(params_tied))
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

Patrick von Platen's avatar
Patrick von Platen committed
599
    def test_inputs_embeds(self):
Sam Shleifer's avatar
Sam Shleifer committed
600

601
602
603
604
605
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.is_encoder_decoder:
            input_ids = inputs_dict["input_ids"]
            del inputs_dict["input_ids"]
        else:
606
            encoder_input_ids = inputs_dict["input_ids"]
Sam Shleifer's avatar
Sam Shleifer committed
607
            decoder_input_ids = inputs_dict.get("decoder_input_ids", encoder_input_ids)
608
            del inputs_dict["input_ids"]
Sam Shleifer's avatar
Sam Shleifer committed
609
            inputs_dict.pop("decoder_input_ids", None)
610
611
612

        for model_class in self.all_model_classes:
            model = model_class(config)
613
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
614
            model.eval()
615
616
617
618
619

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                inputs_dict["inputs_embeds"] = wte(input_ids)
            else:
620
                inputs_dict["inputs_embeds"] = wte(encoder_input_ids)
621
622
                inputs_dict["decoder_inputs_embeds"] = wte(decoder_input_ids)

thomwolf's avatar
thomwolf committed
623
            with torch.no_grad():
624
                model(**inputs_dict)
625

626
    def test_lm_head_model_random_no_beam_search_generate(self):
627
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
628
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
629

630
        # iterate over all generative models
631
632
633
634
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
635
                # if bos token id is not defined mobel needs input_ids
636
                with self.assertRaises(AssertionError):
637
                    model.generate(do_sample=True, max_length=5)
638
                # num_return_sequences = 1
639
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
640
            else:
641
                # num_return_sequences = 1
642
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
643

644
            with self.assertRaises(AssertionError):
645
                # generating multiple sequences when no beam search generation
646
647
648
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

649
650
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
651
652

            # check bad words tokens language generation
653
654
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
655
            output_tokens = model.generate(
656
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
657
            )
658
            # only count generated tokens
659
660
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))
661

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2, num_return_sequences=2,))
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
688
            output_tokens = model.generate(
689
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
690
            )
691
            # only count generated tokens
692
693
694
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = ids_tensor((1, 1), self.model_tester.vocab_size).squeeze(0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

713
    def _check_generated_ids(self, output_ids):
714
715
716
717
        for token_id in output_ids[0].tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

718
719
720
721
722
723
724
725
726
727
728
729
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

730

731
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
732
733


thomwolf's avatar
thomwolf committed
734
def ids_tensor(shape, vocab_size, rng=None, name=None):
735
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
736
    if rng is None:
737
        rng = global_rng
thomwolf's avatar
thomwolf committed
738

thomwolf's avatar
thomwolf committed
739
740
741
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
742

thomwolf's avatar
thomwolf committed
743
744
745
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
746

747
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
748
749


750
751
752
753
754
755
756
757
758
759
760
761
762
def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

763
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
764
765


766
@require_torch
thomwolf's avatar
thomwolf committed
767
class ModelUtilsTest(unittest.TestCase):
768
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
769
    def test_model_from_pretrained(self):
thomwolf's avatar
thomwolf committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
788
789
790
791
792
793


@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
Patrick von Platen's avatar
Patrick von Platen committed
794
    def test_top_k_top_p_filtering(self):
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                7.3534,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                5.4403,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))