test_tokenization_bart.py 8.57 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17
18
19
import json
import os
import unittest

from transformers import BartTokenizer, BartTokenizerFast, BatchEncoding
from transformers.file_utils import cached_property
Sylvain Gugger's avatar
Sylvain Gugger committed
20
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
21
from transformers.testing_utils import require_tokenizers, require_torch
22

23
from .test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors
24
25


26
@require_tokenizers
27
28
class TestTokenizationBart(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = BartTokenizer
29
30
    rust_tokenizer_class = BartTokenizerFast
    test_rust_tokenizer = True
31
32
    from_pretrained_filter = filter_roberta_detectors
    # from_pretrained_kwargs = {'add_prefix_space': True}
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

    def setUp(self):
        super().setUp()
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)

    def get_rust_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
75
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
76
77
78
79
80
81
82
83
84
85
86
87
88
89

    def get_input_output_texts(self, tokenizer):
        return "lower newer", "lower newer"

    @cached_property
    def default_tokenizer(self):
        return BartTokenizer.from_pretrained("facebook/bart-large")

    @cached_property
    def default_tokenizer_fast(self):
        return BartTokenizerFast.from_pretrained("facebook/bart-large")

    @require_torch
    def test_prepare_seq2seq_batch(self):
90
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
91
92
93
94
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
95
        expected_src_tokens = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2]
96
97
98
99
100
101
102

        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(
                src_text, tgt_texts=tgt_text, max_length=len(expected_src_tokens), return_tensors="pt"
            )
            self.assertIsInstance(batch, BatchEncoding)

103
104
            self.assertEqual((2, 9), batch.input_ids.shape)
            self.assertEqual((2, 9), batch.attention_mask.shape)
105
106
107
108
109
110
111
            result = batch.input_ids.tolist()[0]
            self.assertListEqual(expected_src_tokens, result)
            # Test that special tokens are reset

    # Test Prepare Seq
    @require_torch
    def test_seq2seq_batch_empty_target_text(self):
112
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
113
114
115
116
117
118
119
120
121
122
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(src_text, return_tensors="pt")
            # check if input_ids are returned and no labels
            self.assertIn("input_ids", batch)
            self.assertIn("attention_mask", batch)
            self.assertNotIn("labels", batch)
            self.assertNotIn("decoder_attention_mask", batch)

    @require_torch
    def test_seq2seq_batch_max_target_length(self):
123
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(
                src_text, tgt_texts=tgt_text, max_target_length=32, padding="max_length", return_tensors="pt"
            )
            self.assertEqual(32, batch["labels"].shape[1])

            # test None max_target_length
            batch = tokenizer.prepare_seq2seq_batch(
                src_text, tgt_texts=tgt_text, max_length=32, padding="max_length", return_tensors="pt"
            )
            self.assertEqual(32, batch["labels"].shape[1])

    @require_torch
    def test_seq2seq_batch_not_longer_than_maxlen(self):
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(
                ["I am a small frog" * 1024, "I am a small frog"], return_tensors="pt"
            )
            self.assertIsInstance(batch, BatchEncoding)
            self.assertEqual(batch.input_ids.shape, (2, 1024))

    @require_torch
    def test_special_tokens(self):

152
        src_text = ["A long paragraph for summarization."]
153
154
155
156
157
158
159
160
161
162
163
        tgt_text = [
            "Summary of the text.",
        ]
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(src_text, tgt_texts=tgt_text, return_tensors="pt")
            input_ids = batch["input_ids"]
            labels = batch["labels"]
            self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item())
            self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item())
            self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item())
            self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item())
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

    def test_pretokenized_inputs(self):
        pass

    def test_embeded_special_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                sentence = "A, <mask> AllenNLP sentence."
                tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
                tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)

                # token_type_ids should put 0 everywhere
                self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))

                # attention_mask should put 1 everywhere, so sum over length should be 1
                self.assertEqual(
                    sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
                    sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
                )

                tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
                tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])

                # Rust correctly handles the space before the mask while python doesnt
                self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
                self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])

                self.assertSequenceEqual(
                    tokens_p_str, ["<s>", "A", ",", "<mask>", "臓Allen", "N", "LP", "臓sentence", ".", "</s>"]
                )
                self.assertSequenceEqual(
                    tokens_r_str, ["<s>", "A", ",", "<mask>", "臓Allen", "N", "LP", "臓sentence", ".", "</s>"]
                )