test_tokenization_bart.py 7.98 KB
Newer Older
1
2
3
4
5
6
import json
import os
import unittest

from transformers import BartTokenizer, BartTokenizerFast, BatchEncoding
from transformers.file_utils import cached_property
Sylvain Gugger's avatar
Sylvain Gugger committed
7
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
8
from transformers.testing_utils import require_tokenizers, require_torch
9

10
from .test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors
11
12


13
@require_tokenizers
14
15
class TestTokenizationBart(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = BartTokenizer
16
17
    rust_tokenizer_class = BartTokenizerFast
    test_rust_tokenizer = True
18
19
    from_pretrained_filter = filter_roberta_detectors
    # from_pretrained_kwargs = {'add_prefix_space': True}
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

    def setUp(self):
        super().setUp()
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)

    def get_rust_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
62
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
63
64
65
66
67
68
69
70
71
72
73
74
75
76

    def get_input_output_texts(self, tokenizer):
        return "lower newer", "lower newer"

    @cached_property
    def default_tokenizer(self):
        return BartTokenizer.from_pretrained("facebook/bart-large")

    @cached_property
    def default_tokenizer_fast(self):
        return BartTokenizerFast.from_pretrained("facebook/bart-large")

    @require_torch
    def test_prepare_seq2seq_batch(self):
77
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
78
79
80
81
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
82
        expected_src_tokens = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2]
83
84
85
86
87
88
89

        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(
                src_text, tgt_texts=tgt_text, max_length=len(expected_src_tokens), return_tensors="pt"
            )
            self.assertIsInstance(batch, BatchEncoding)

90
91
            self.assertEqual((2, 9), batch.input_ids.shape)
            self.assertEqual((2, 9), batch.attention_mask.shape)
92
93
94
95
96
97
98
            result = batch.input_ids.tolist()[0]
            self.assertListEqual(expected_src_tokens, result)
            # Test that special tokens are reset

    # Test Prepare Seq
    @require_torch
    def test_seq2seq_batch_empty_target_text(self):
99
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
100
101
102
103
104
105
106
107
108
109
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(src_text, return_tensors="pt")
            # check if input_ids are returned and no labels
            self.assertIn("input_ids", batch)
            self.assertIn("attention_mask", batch)
            self.assertNotIn("labels", batch)
            self.assertNotIn("decoder_attention_mask", batch)

    @require_torch
    def test_seq2seq_batch_max_target_length(self):
110
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(
                src_text, tgt_texts=tgt_text, max_target_length=32, padding="max_length", return_tensors="pt"
            )
            self.assertEqual(32, batch["labels"].shape[1])

            # test None max_target_length
            batch = tokenizer.prepare_seq2seq_batch(
                src_text, tgt_texts=tgt_text, max_length=32, padding="max_length", return_tensors="pt"
            )
            self.assertEqual(32, batch["labels"].shape[1])

    @require_torch
    def test_seq2seq_batch_not_longer_than_maxlen(self):
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(
                ["I am a small frog" * 1024, "I am a small frog"], return_tensors="pt"
            )
            self.assertIsInstance(batch, BatchEncoding)
            self.assertEqual(batch.input_ids.shape, (2, 1024))

    @require_torch
    def test_special_tokens(self):

139
        src_text = ["A long paragraph for summarization."]
140
141
142
143
144
145
146
147
148
149
150
        tgt_text = [
            "Summary of the text.",
        ]
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(src_text, tgt_texts=tgt_text, return_tensors="pt")
            input_ids = batch["input_ids"]
            labels = batch["labels"]
            self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item())
            self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item())
            self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item())
            self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item())
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

    def test_pretokenized_inputs(self):
        pass

    def test_embeded_special_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                sentence = "A, <mask> AllenNLP sentence."
                tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
                tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)

                # token_type_ids should put 0 everywhere
                self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))

                # attention_mask should put 1 everywhere, so sum over length should be 1
                self.assertEqual(
                    sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
                    sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
                )

                tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
                tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])

                # Rust correctly handles the space before the mask while python doesnt
                self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
                self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])

                self.assertSequenceEqual(
                    tokens_p_str, ["<s>", "A", ",", "<mask>", "臓Allen", "N", "LP", "臓sentence", ".", "</s>"]
                )
                self.assertSequenceEqual(
                    tokens_r_str, ["<s>", "A", ",", "<mask>", "臓Allen", "N", "LP", "臓sentence", ".", "</s>"]
                )