test_flax_auto.py 3.03 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
18
19
20
21
22
import unittest

from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import require_flax, slow


if is_flax_available():
    import jax
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
25
    from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
    from transformers.models.bert.modeling_flax_bert import FlaxBertModel
    from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78


@require_flax
class FlaxAutoModelTest(unittest.TestCase):
    @slow
    def test_bert_from_pretrained(self):
        for model_name in ["bert-base-cased", "bert-large-uncased"]:
            with self.subTest(model_name):
                config = AutoConfig.from_pretrained(model_name)
                self.assertIsNotNone(config)
                self.assertIsInstance(config, BertConfig)

                model = FlaxAutoModel.from_pretrained(model_name)
                self.assertIsNotNone(model)
                self.assertIsInstance(model, FlaxBertModel)

    @slow
    def test_roberta_from_pretrained(self):
        for model_name in ["roberta-base-cased", "roberta-large-uncased"]:
            with self.subTest(model_name):
                config = AutoConfig.from_pretrained(model_name)
                self.assertIsNotNone(config)
                self.assertIsInstance(config, BertConfig)

                model = FlaxAutoModel.from_pretrained(model_name)
                self.assertIsNotNone(model)
                self.assertIsInstance(model, FlaxRobertaModel)

    @slow
    def test_bert_jax_jit(self):
        for model_name in ["bert-base-cased", "bert-large-uncased"]:
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = FlaxBertModel.from_pretrained(model_name)
            tokens = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX)

            @jax.jit
            def eval(**kwargs):
                return model(**kwargs)

            eval(**tokens).block_until_ready()

    @slow
    def test_roberta_jax_jit(self):
        for model_name in ["roberta-base-cased", "roberta-large-uncased"]:
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = FlaxRobertaModel.from_pretrained(model_name)
            tokens = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX)

            @jax.jit
            def eval(**kwargs):
                return model(**kwargs)

            eval(**tokens).block_until_ready()