test_flax_auto.py 2.44 KB
Newer Older
1
2
3
4
5
6
7
8
import unittest

from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import require_flax, slow


if is_flax_available():
    import jax
Sylvain Gugger's avatar
Sylvain Gugger committed
9
10
11
    from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
    from transformers.models.bert.modeling_flax_bert import FlaxBertModel
    from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64


@require_flax
class FlaxAutoModelTest(unittest.TestCase):
    @slow
    def test_bert_from_pretrained(self):
        for model_name in ["bert-base-cased", "bert-large-uncased"]:
            with self.subTest(model_name):
                config = AutoConfig.from_pretrained(model_name)
                self.assertIsNotNone(config)
                self.assertIsInstance(config, BertConfig)

                model = FlaxAutoModel.from_pretrained(model_name)
                self.assertIsNotNone(model)
                self.assertIsInstance(model, FlaxBertModel)

    @slow
    def test_roberta_from_pretrained(self):
        for model_name in ["roberta-base-cased", "roberta-large-uncased"]:
            with self.subTest(model_name):
                config = AutoConfig.from_pretrained(model_name)
                self.assertIsNotNone(config)
                self.assertIsInstance(config, BertConfig)

                model = FlaxAutoModel.from_pretrained(model_name)
                self.assertIsNotNone(model)
                self.assertIsInstance(model, FlaxRobertaModel)

    @slow
    def test_bert_jax_jit(self):
        for model_name in ["bert-base-cased", "bert-large-uncased"]:
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = FlaxBertModel.from_pretrained(model_name)
            tokens = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX)

            @jax.jit
            def eval(**kwargs):
                return model(**kwargs)

            eval(**tokens).block_until_ready()

    @slow
    def test_roberta_jax_jit(self):
        for model_name in ["roberta-base-cased", "roberta-large-uncased"]:
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = FlaxRobertaModel.from_pretrained(model_name)
            tokens = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX)

            @jax.jit
            def eval(**kwargs):
                return model(**kwargs)

            eval(**tokens).block_until_ready()