test_data_collator.py 11.1 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
import os
import shutil
import tempfile
Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
import unittest

20
21
from transformers import BertTokenizer, is_torch_available, set_seed
from transformers.testing_utils import require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
22
23
24
25
26
27
28
29


if is_torch_available():
    import torch

    from transformers import (
        DataCollatorForLanguageModeling,
        DataCollatorForPermutationLanguageModeling,
30
31
        DataCollatorForTokenClassification,
        DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
32
33
34
35
36
37
        default_data_collator,
    )


@require_torch
class DataCollatorIntegrationTest(unittest.TestCase):
38
39
40
41
42
43
44
45
46
47
48
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
        self.vocab_file = os.path.join(self.tmpdirname, "vocab.txt")
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

Sylvain Gugger's avatar
Sylvain Gugger committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    def test_default_with_dict(self):
        features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor([[0, 1, 2]] * 8)))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # Features can already be tensors
        features = [{"label": i, "inputs": torch.randint(10, [10])} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))

        # Labels can already be tensors
        features = [{"label": torch.tensor(i), "inputs": torch.randint(10, [10])} for i in range(8)]
        batch = default_data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))

78
79
80
81
82
83
84
85
86
87
88
    def test_default_classification_and_regression(self):
        data_collator = default_data_collator

        features = [{"input_ids": [0, 1, 2, 3, 4], "label": i} for i in range(4)]
        batch = data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.long)

        features = [{"input_ids": [0, 1, 2, 3, 4], "label": float(i)} for i in range(4)]
        batch = data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.float)

Sylvain Gugger's avatar
Sylvain Gugger committed
89
90
91
92
93
94
95
96
97
98
99
100
    def test_default_with_no_labels(self):
        features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    def test_data_collator_with_padding(self):
        tokenizer = BertTokenizer(self.vocab_file)
        features = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}]

        data_collator = DataCollatorWithPadding(tokenizer)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)

        data_collator = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=10)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10]))

        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8]))

    def test_data_collator_for_token_classification(self):
        tokenizer = BertTokenizer(self.vocab_file)
        features = [
            {"input_ids": [0, 1, 2], "labels": [0, 1, 2]},
            {"input_ids": [0, 1, 2, 3, 4, 5], "labels": [0, 1, 2, 3, 4, 5]},
        ]

        data_collator = DataCollatorForTokenClassification(tokenizer)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)
        self.assertEqual(batch["labels"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-100] * 3)

        data_collator = DataCollatorForTokenClassification(tokenizer, padding="max_length", max_length=10)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10]))
        self.assertEqual(batch["labels"].shape, torch.Size([2, 10]))

        data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8]))
        self.assertEqual(batch["labels"].shape, torch.Size([2, 8]))

        data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)
        self.assertEqual(batch["labels"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-1] * 3)

    def test_data_collator_for_language_modeling(self):
        tokenizer = BertTokenizer(self.vocab_file)
        no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}]
        pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}]
Sylvain Gugger's avatar
Sylvain Gugger committed
153
154

        data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
155
156
157
        batch = data_collator(no_pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
158

159
160
161
        batch = data_collator(pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
162

163
164
165
166
167
        tokenizer._pad_token = None
        data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
        with self.assertRaises(ValueError):
            # Expect error due to padding token missing
            data_collator(pad_features)
Sylvain Gugger's avatar
Sylvain Gugger committed
168

169
170
        set_seed(42)  # For reproducibility
        tokenizer = BertTokenizer(self.vocab_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
171
        data_collator = DataCollatorForLanguageModeling(tokenizer)
172
173
174
        batch = data_collator(no_pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
175

176
177
178
        masked_tokens = batch["input_ids"] == tokenizer.mask_token_id
        self.assertTrue(torch.any(masked_tokens))
        self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist()))
Sylvain Gugger's avatar
Sylvain Gugger committed
179

180
181
182
183
184
185
186
        batch = data_collator(pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))

        masked_tokens = batch["input_ids"] == tokenizer.mask_token_id
        self.assertTrue(torch.any(masked_tokens))
        self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist()))
Sylvain Gugger's avatar
Sylvain Gugger committed
187
188

    def test_plm(self):
189
190
191
192
        tokenizer = BertTokenizer(self.vocab_file)
        no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}]
        pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}]

Sylvain Gugger's avatar
Sylvain Gugger committed
193
194
        data_collator = DataCollatorForPermutationLanguageModeling(tokenizer)

195
        batch = data_collator(pad_features)
Sylvain Gugger's avatar
Sylvain Gugger committed
196
        self.assertIsInstance(batch, dict)
197
198
199
200
201
202
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))

        batch = data_collator(no_pad_features)
Sylvain Gugger's avatar
Sylvain Gugger committed
203
        self.assertIsInstance(batch, dict)
204
205
206
207
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
208
209
210
211
212

        example = [torch.randint(5, [5])]
        with self.assertRaises(ValueError):
            # Expect error due to odd sequence length
            data_collator(example)
213
214

    def test_nsp(self):
215
        tokenizer = BertTokenizer(self.vocab_file)
216
217
218
219
220
        features = [
            {"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i}
            for i in range(2)
        ]
        data_collator = DataCollatorForLanguageModeling(tokenizer)
221
        batch = data_collator(features)
222

223
224
225
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 5)))
226
        self.assertEqual(batch["next_sentence_label"].shape, torch.Size((2,)))
227
228

    def test_sop(self):
229
230
231
232
233
        tokenizer = BertTokenizer(self.vocab_file)
        features = [
            {
                "input_ids": torch.tensor([0, 1, 2, 3, 4]),
                "token_type_ids": torch.tensor([0, 1, 2, 3, 4]),
234
                "sentence_order_label": i,
235
236
237
            }
            for i in range(2)
        ]
238
        data_collator = DataCollatorForLanguageModeling(tokenizer)
239
        batch = data_collator(features)
240

241
242
243
244
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["sentence_order_label"].shape, torch.Size((2,)))