fsmt-make-super-tiny-model.py 3.21 KB
Newer Older
1
2
#!/usr/bin/env python
# coding: utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"

from pathlib import Path
import json
import tempfile

from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
Sylvain Gugger's avatar
Sylvain Gugger committed
32
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

mname_tiny = "tiny-wmt19-en-ru"

# Build

# borrowed from a test 
vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]

with tempfile.TemporaryDirectory() as tmpdirname:
    build_dir = Path(tmpdirname)
    src_vocab_file = build_dir / VOCAB_FILES_NAMES["src_vocab_file"]
    tgt_vocab_file = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"]
    merges_file = build_dir / VOCAB_FILES_NAMES["merges_file"]
    with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens))
    with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens))
    with open(merges_file, "w") as fp   : fp.write("\n".join(merges))

    tokenizer = FSMTTokenizer(
        langs=["en", "ru"],
        src_vocab_size = len(vocab),
        tgt_vocab_size = len(vocab),
        src_vocab_file=src_vocab_file,
        tgt_vocab_file=tgt_vocab_file,
        merges_file=merges_file,
    )
    
config = FSMTConfig(
    langs=['ru', 'en'],
    src_vocab_size=1000, tgt_vocab_size=1000,
    d_model=4,
    encoder_layers=1, decoder_layers=1,
    encoder_ffn_dim=4, decoder_ffn_dim=4,
    encoder_attention_heads=1, decoder_attention_heads=1,
)

tiny_model = FSMTForConditionalGeneration(config)
print(f"num of params {tiny_model.num_parameters()}")

# Test
74
batch = tokenizer.prepare_seq2seq_batch(["Making tiny model"], return_tensors="pt")
75
outputs = tiny_model(**batch)
76
77
78
79
80
81
82
83
84
85
86
87

print("test output:", len(outputs.logits[0]))

# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)

print(f"Generated {mname_tiny}")

# Upload
# transformers-cli upload tiny-wmt19-en-ru