fsmt-make-super-tiny-model.py 2.62 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/usr/bin/env python
# coding: utf-8

# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"

from pathlib import Path
import json
import tempfile

from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
Sylvain Gugger's avatar
Sylvain Gugger committed
19
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

mname_tiny = "tiny-wmt19-en-ru"

# Build

# borrowed from a test 
vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]

with tempfile.TemporaryDirectory() as tmpdirname:
    build_dir = Path(tmpdirname)
    src_vocab_file = build_dir / VOCAB_FILES_NAMES["src_vocab_file"]
    tgt_vocab_file = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"]
    merges_file = build_dir / VOCAB_FILES_NAMES["merges_file"]
    with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens))
    with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens))
    with open(merges_file, "w") as fp   : fp.write("\n".join(merges))

    tokenizer = FSMTTokenizer(
        langs=["en", "ru"],
        src_vocab_size = len(vocab),
        tgt_vocab_size = len(vocab),
        src_vocab_file=src_vocab_file,
        tgt_vocab_file=tgt_vocab_file,
        merges_file=merges_file,
    )
    
config = FSMTConfig(
    langs=['ru', 'en'],
    src_vocab_size=1000, tgt_vocab_size=1000,
    d_model=4,
    encoder_layers=1, decoder_layers=1,
    encoder_ffn_dim=4, decoder_ffn_dim=4,
    encoder_attention_heads=1, decoder_attention_heads=1,
)

tiny_model = FSMTForConditionalGeneration(config)
print(f"num of params {tiny_model.num_parameters()}")

# Test
61
batch = tokenizer.prepare_seq2seq_batch(["Making tiny model"], return_tensors="pt")
62
outputs = tiny_model(**batch)
63
64
65
66
67
68
69
70
71
72
73
74

print("test output:", len(outputs.logits[0]))

# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)

print(f"Generated {mname_tiny}")

# Upload
# transformers-cli upload tiny-wmt19-en-ru