hubconf.py 7.13 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
18
19
20
21
22
import os
import sys

SRC_DIR = os.path.join(os.path.dirname(__file__), "src")
sys.path.append(SRC_DIR)


from transformers import (
23
24
25
    AutoConfig,
    AutoModel,
    AutoModelForQuestionAnswering,
Aymeric Augustin's avatar
Aymeric Augustin committed
26
27
28
    AutoModelForSequenceClassification,
    AutoModelWithLMHead,
    AutoTokenizer,
29
    add_start_docstrings,
thomwolf's avatar
thomwolf committed
30
31
)

Aymeric Augustin's avatar
Aymeric Augustin committed
32

Julien Chaumond's avatar
Julien Chaumond committed
33
dependencies = ["torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses"]
34

VictorSanh's avatar
VictorSanh committed
35

thomwolf's avatar
thomwolf committed
36
37
@add_start_docstrings(AutoConfig.__doc__)
def config(*args, **kwargs):
38
    r"""
thomwolf's avatar
thomwolf committed
39
40
41
                # Using torch.hub !
                import torch

42
                config = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased')  # Download configuration from huggingface.co and cache.
43
44
                config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/')  # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
                config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/my_configuration.json')
45
46
47
48
                config = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased', output_attentions=True, foo=False)
                assert config.output_attentions == True
                config, unused_kwargs = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased', output_attentions=True, foo=False, return_unused_kwargs=True)
                assert config.output_attentions == True
thomwolf's avatar
thomwolf committed
49
50
51
52
53
54
55
56
57
                assert unused_kwargs == {'foo': False}

            """

    return AutoConfig.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoTokenizer.__doc__)
def tokenizer(*args, **kwargs):
58
    r"""
thomwolf's avatar
thomwolf committed
59
60
61
        # Using torch.hub !
        import torch

62
        tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', 'bert-base-uncased')    # Download vocabulary from huggingface.co and cache.
63
        tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', './test/bert_saved_model/')  # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`
thomwolf's avatar
thomwolf committed
64
65
66
67
68
69
70
71
72
73
74
75

    """

    return AutoTokenizer.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoModel.__doc__)
def model(*args, **kwargs):
    r"""
            # Using torch.hub !
            import torch

76
            model = torch.hub.load('huggingface/transformers', 'model', 'bert-base-uncased')    # Download model and configuration from huggingface.co and cache.
77
            model = torch.hub.load('huggingface/transformers', 'model', './test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
78
79
            model = torch.hub.load('huggingface/transformers', 'model', 'bert-base-uncased', output_attentions=True)  # Update configuration during loading
            assert model.config.output_attentions == True
thomwolf's avatar
thomwolf committed
80
81
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
82
            model = torch.hub.load('huggingface/transformers', 'model', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
83
84
85
86
87

        """

    return AutoModel.from_pretrained(*args, **kwargs)

88

thomwolf's avatar
thomwolf committed
89
90
91
92
93
94
@add_start_docstrings(AutoModelWithLMHead.__doc__)
def modelWithLMHead(*args, **kwargs):
    r"""
        # Using torch.hub !
        import torch

95
        model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', 'bert-base-uncased')    # Download model and configuration from huggingface.co and cache.
96
        model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', './test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
97
98
        model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', 'bert-base-uncased', output_attentions=True)  # Update configuration during loading
        assert model.config.output_attentions == True
thomwolf's avatar
thomwolf committed
99
100
        # Loading from a TF checkpoint file instead of a PyTorch model (slower)
        config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
101
        model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
102
103
104
105
106
107
108
109
110
111
112

    """
    return AutoModelWithLMHead.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoModelForSequenceClassification.__doc__)
def modelForSequenceClassification(*args, **kwargs):
    r"""
            # Using torch.hub !
            import torch

113
            model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'bert-base-uncased')    # Download model and configuration from huggingface.co and cache.
114
            model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
115
116
            model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'bert-base-uncased', output_attentions=True)  # Update configuration during loading
            assert model.config.output_attentions == True
thomwolf's avatar
thomwolf committed
117
118
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
119
            model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
120
121
122
123
124
125
126
127
128
129
130
131

        """

    return AutoModelForSequenceClassification.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoModelForQuestionAnswering.__doc__)
def modelForQuestionAnswering(*args, **kwargs):
    r"""
        # Using torch.hub !
        import torch

132
        model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'bert-base-uncased')    # Download model and configuration from huggingface.co and cache.
133
        model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
134
135
        model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'bert-base-uncased', output_attentions=True)  # Update configuration during loading
        assert model.config.output_attentions == True
thomwolf's avatar
thomwolf committed
136
137
        # Loading from a TF checkpoint file instead of a PyTorch model (slower)
        config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
138
        model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
139
140
141

    """
    return AutoModelForQuestionAnswering.from_pretrained(*args, **kwargs)