hubconf.py 6.46 KB
Newer Older
1
2
3
4
5
6
7
8
import os
import sys

SRC_DIR = os.path.join(os.path.dirname(__file__), "src")
sys.path.append(SRC_DIR)


from transformers import (
9
10
11
    AutoConfig,
    AutoModel,
    AutoModelForQuestionAnswering,
Aymeric Augustin's avatar
Aymeric Augustin committed
12
13
14
    AutoModelForSequenceClassification,
    AutoModelWithLMHead,
    AutoTokenizer,
15
    add_start_docstrings,
thomwolf's avatar
thomwolf committed
16
17
)

Aymeric Augustin's avatar
Aymeric Augustin committed
18

Julien Chaumond's avatar
Julien Chaumond committed
19
dependencies = ["torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses"]
20

VictorSanh's avatar
VictorSanh committed
21

thomwolf's avatar
thomwolf committed
22
23
@add_start_docstrings(AutoConfig.__doc__)
def config(*args, **kwargs):
24
    r"""
thomwolf's avatar
thomwolf committed
25
26
27
                # Using torch.hub !
                import torch

28
29
30
31
                config = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased')  # Download configuration from S3 and cache.
                config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/')  # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
                config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/my_configuration.json')
                config = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased', output_attention=True, foo=False)
thomwolf's avatar
thomwolf committed
32
                assert config.output_attention == True
33
                config, unused_kwargs = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased', output_attention=True, foo=False, return_unused_kwargs=True)
thomwolf's avatar
thomwolf committed
34
35
36
37
38
39
40
41
42
43
                assert config.output_attention == True
                assert unused_kwargs == {'foo': False}

            """

    return AutoConfig.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoTokenizer.__doc__)
def tokenizer(*args, **kwargs):
44
    r"""
thomwolf's avatar
thomwolf committed
45
46
47
        # Using torch.hub !
        import torch

48
49
        tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', 'bert-base-uncased')    # Download vocabulary from S3 and cache.
        tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', './test/bert_saved_model/')  # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`
thomwolf's avatar
thomwolf committed
50
51
52
53
54
55
56
57
58
59
60
61

    """

    return AutoTokenizer.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoModel.__doc__)
def model(*args, **kwargs):
    r"""
            # Using torch.hub !
            import torch

62
63
64
            model = torch.hub.load('huggingface/transformers', 'model', 'bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = torch.hub.load('huggingface/transformers', 'model', './test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = torch.hub.load('huggingface/transformers', 'model', 'bert-base-uncased', output_attention=True)  # Update configuration during loading
thomwolf's avatar
thomwolf committed
65
66
67
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
68
            model = torch.hub.load('huggingface/transformers', 'model', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
69
70
71
72
73

        """

    return AutoModel.from_pretrained(*args, **kwargs)

74

thomwolf's avatar
thomwolf committed
75
76
77
78
79
80
@add_start_docstrings(AutoModelWithLMHead.__doc__)
def modelWithLMHead(*args, **kwargs):
    r"""
        # Using torch.hub !
        import torch

81
82
83
        model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', 'bert-base-uncased')    # Download model and configuration from S3 and cache.
        model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', './test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', 'bert-base-uncased', output_attention=True)  # Update configuration during loading
thomwolf's avatar
thomwolf committed
84
85
86
        assert model.config.output_attention == True
        # Loading from a TF checkpoint file instead of a PyTorch model (slower)
        config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
87
        model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
88
89
90
91
92
93
94
95
96
97
98

    """
    return AutoModelWithLMHead.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoModelForSequenceClassification.__doc__)
def modelForSequenceClassification(*args, **kwargs):
    r"""
            # Using torch.hub !
            import torch

99
100
101
            model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'bert-base-uncased', output_attention=True)  # Update configuration during loading
thomwolf's avatar
thomwolf committed
102
103
104
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
105
            model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
106
107
108
109
110
111
112
113
114
115
116
117

        """

    return AutoModelForSequenceClassification.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoModelForQuestionAnswering.__doc__)
def modelForQuestionAnswering(*args, **kwargs):
    r"""
        # Using torch.hub !
        import torch

118
119
120
        model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'bert-base-uncased')    # Download model and configuration from S3 and cache.
        model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'bert-base-uncased', output_attention=True)  # Update configuration during loading
thomwolf's avatar
thomwolf committed
121
122
123
        assert model.config.output_attention == True
        # Loading from a TF checkpoint file instead of a PyTorch model (slower)
        config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
124
        model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
125
126
127

    """
    return AutoModelForQuestionAnswering.from_pretrained(*args, **kwargs)