index.rst 26 KB
Newer Older
1
Transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
2
=======================================================================================================================
3

4
State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
thomwolf's avatar
thomwolf committed
5

6
7
8
🤗 Transformers (formerly known as `pytorch-transformers` and `pytorch-pretrained-bert`) provides general-purpose
architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural Language Understanding (NLU) and Natural
Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between
9
10
11
TensorFlow 2.0 and PyTorch.

This is the documentation of our repository `transformers <https://github.com/huggingface/transformers>`_.
12

LysandreJik's avatar
LysandreJik committed
13
Features
Sylvain Gugger's avatar
Sylvain Gugger committed
14
-----------------------------------------------------------------------------------------------------------------------
LysandreJik's avatar
LysandreJik committed
15
16
17
18

- High performance on NLU and NLG tasks
- Low barrier to entry for educators and practitioners

LysandreJik's avatar
LysandreJik committed
19
20
State-of-the-art NLP for everyone:

LysandreJik's avatar
LysandreJik committed
21
22
23
24
- Deep learning researchers
- Hands-on practitioners
- AI/ML/NLP teachers and educators

Sylvain Gugger's avatar
Sylvain Gugger committed
25
26
27
28
29
30
31
32
33
34
35
36
.. 
    Copyright 2020 The HuggingFace Team. All rights reserved.

    Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
    the License. You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
    an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
    specific language governing permissions and limitations under the License.

LysandreJik's avatar
LysandreJik committed
37
38
Lower compute costs, smaller carbon footprint:

LysandreJik's avatar
LysandreJik committed
39
40
41
42
- Researchers can share trained models instead of always retraining
- Practitioners can reduce compute time and production costs
- 8 architectures with over 30 pretrained models, some in more than 100 languages

LysandreJik's avatar
LysandreJik committed
43
44
Choose the right framework for every part of a model's lifetime:

LysandreJik's avatar
LysandreJik committed
45
46
47
48
49
- Train state-of-the-art models in 3 lines of code
- Deep interoperability between TensorFlow 2.0 and PyTorch models
- Move a single model between TF2.0/PyTorch frameworks at will
- Seamlessly pick the right framework for training, evaluation, production

Sylvain Gugger's avatar
Sylvain Gugger committed
50
51
Experimental support for Flax with a few models right now, expected to grow in the coming months.

52
53
54
55
56
57
58
59
`All the model checkpoints <https://huggingface.co/models>`__ are seamlessly integrated from the huggingface.co `model
hub <https://huggingface.co>`__ where they are uploaded directly by `users <https://huggingface.co/users>`__ and
`organizations <https://huggingface.co/organizations>`__.

Current number of checkpoints: |checkpoints|

.. |checkpoints| image:: https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen

LysandreJik's avatar
LysandreJik committed
60
Contents
Sylvain Gugger's avatar
Sylvain Gugger committed
61
-----------------------------------------------------------------------------------------------------------------------
LysandreJik's avatar
LysandreJik committed
62

Sylvain Gugger's avatar
Sylvain Gugger committed
63
64
65
66
The documentation is organized in five parts:

- **GET STARTED** contains a quick tour, the installation instructions and some useful information about our philosophy
  and a glossary.
Sylvain Gugger's avatar
Sylvain Gugger committed
67
- **USING 🤗 TRANSFORMERS** contains general tutorials on how to use the library.
Sylvain Gugger's avatar
Sylvain Gugger committed
68
- **ADVANCED GUIDES** contains more advanced guides that are more specific to a given script or part of the library.
Santiago Castro's avatar
Santiago Castro committed
69
- **RESEARCH** focuses on tutorials that have less to do with how to use the library but more about general research in
Sylvain Gugger's avatar
Sylvain Gugger committed
70
  transformers model
71
- The three last section contain the documentation of each public class and function, grouped in:
Sylvain Gugger's avatar
Sylvain Gugger committed
72

73
74
75
    - **MAIN CLASSES** for the main classes exposing the important APIs of the library.
    - **MODELS** for the classes and functions related to each model implemented in the library.
    - **INTERNAL HELPERS** for the classes and functions we use internally.
Sylvain Gugger's avatar
Sylvain Gugger committed
76

Sylvain Gugger's avatar
Sylvain Gugger committed
77
78
The library currently contains PyTorch, Tensorflow and Flax implementations, pretrained model weights, usage scripts
and conversion utilities for the following models:
79

80
81
82
..
    This list is updated automatically from the README with `make fix-copies`. Do not update manually!

83
84
85
86
87
88
1. :doc:`ALBERT <model_doc/albert>` (from Google Research and the Toyota Technological Institute at Chicago) released
   with the paper `ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
   <https://arxiv.org/abs/1909.11942>`__, by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
   Sharma, Radu Soricut.
2. :doc:`BART <model_doc/bart>` (from Facebook) released with the paper `BART: Denoising Sequence-to-Sequence
   Pre-training for Natural Language Generation, Translation, and Comprehension
89
90
   <https://arxiv.org/pdf/1910.13461.pdf>`__ by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
   Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
91
92
93
94
3. :doc:`BARThez <model_doc/barthez>` (from École polytechnique) released with the paper `BARThez: a Skilled Pretrained
   French Sequence-to-Sequence Model <https://arxiv.org/abs/2010.12321>`__ by Moussa Kamal Eddine, Antoine J.-P.
   Tixier, Michalis Vazirgiannis.
4. :doc:`BERT <model_doc/bert>` (from Google) released with the paper `BERT: Pre-training of Deep Bidirectional
95
96
   Transformers for Language Understanding <https://arxiv.org/abs/1810.04805>`__ by Jacob Devlin, Ming-Wei Chang,
   Kenton Lee and Kristina Toutanova.
97
5. :doc:`BERT For Sequence Generation <model_doc/bertgeneration>` (from Google) released with the paper `Leveraging
98
99
   Pre-trained Checkpoints for Sequence Generation Tasks <https://arxiv.org/abs/1907.12461>`__ by Sascha Rothe, Shashi
   Narayan, Aliaksei Severyn.
100
6. :doc:`Blenderbot <model_doc/blenderbot>` (from Facebook) released with the paper `Recipes for building an
Lysandre's avatar
Lysandre committed
101
102
   open-domain chatbot <https://arxiv.org/abs/2004.13637>`__ by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary
   Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
103
7. :doc:`CamemBERT <model_doc/camembert>` (from Inria/Facebook/Sorbonne) released with the paper `CamemBERT: a Tasty
104
105
   French Language Model <https://arxiv.org/abs/1911.03894>`__ by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz
   Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
106
8. :doc:`CTRL <model_doc/ctrl>` (from Salesforce) released with the paper `CTRL: A Conditional Transformer Language
107
108
   Model for Controllable Generation <https://arxiv.org/abs/1909.05858>`__ by Nitish Shirish Keskar*, Bryan McCann*,
   Lav R. Varshney, Caiming Xiong and Richard Socher.
109
9. :doc:`DeBERTa <model_doc/deberta>` (from Microsoft Research) released with the paper `DeBERTa: Decoding-enhanced
Lysandre's avatar
Lysandre committed
110
111
   BERT with Disentangled Attention <https://arxiv.org/abs/2006.03654>`__ by Pengcheng He, Xiaodong Liu, Jianfeng Gao,
   Weizhu Chen.
112
113
114
115
10. :doc:`DialoGPT <model_doc/dialogpt>` (from Microsoft Research) released with the paper `DialoGPT: Large-Scale
    Generative Pre-training for Conversational Response Generation <https://arxiv.org/abs/1911.00536>`__ by Yizhe
    Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
11. :doc:`DistilBERT <model_doc/distilbert>` (from HuggingFace), released together with the paper `DistilBERT, a
116
117
118
119
120
121
    distilled version of BERT: smaller, faster, cheaper and lighter <https://arxiv.org/abs/1910.01108>`__ by Victor
    Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into `DistilGPT2
    <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__, RoBERTa into `DistilRoBERTa
    <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__, Multilingual BERT into
    `DistilmBERT <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__ and a German
    version of DistilBERT.
122
12. :doc:`DPR <model_doc/dpr>` (from Facebook) released with the paper `Dense Passage Retrieval for Open-Domain
123
124
    Question Answering <https://arxiv.org/abs/2004.04906>`__ by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
    Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
125
13. :doc:`ELECTRA <model_doc/electra>` (from Google Research/Stanford University) released with the paper `ELECTRA:
126
127
    Pre-training text encoders as discriminators rather than generators <https://arxiv.org/abs/2003.10555>`__ by Kevin
    Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
128
14. :doc:`FlauBERT <model_doc/flaubert>` (from CNRS) released with the paper `FlauBERT: Unsupervised Language Model
129
130
    Pre-training for French <https://arxiv.org/abs/1912.05372>`__ by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne,
    Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
131
15. :doc:`Funnel Transformer <model_doc/funnel>` (from CMU/Google Brain) released with the paper `Funnel-Transformer:
132
133
    Filtering out Sequential Redundancy for Efficient Language Processing <https://arxiv.org/abs/2006.03236>`__ by
    Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
134
16. :doc:`GPT <model_doc/gpt>` (from OpenAI) released with the paper `Improving Language Understanding by Generative
135
136
    Pre-Training <https://blog.openai.com/language-unsupervised/>`__ by Alec Radford, Karthik Narasimhan, Tim Salimans
    and Ilya Sutskever.
137
17. :doc:`GPT-2 <model_doc/gpt2>` (from OpenAI) released with the paper `Language Models are Unsupervised Multitask
138
139
    Learners <https://blog.openai.com/better-language-models/>`__ by Alec Radford*, Jeffrey Wu*, Rewon Child, David
    Luan, Dario Amodei** and Ilya Sutskever**.
140
18. :doc:`LayoutLM <model_doc/layoutlm>` (from Microsoft Research Asia) released with the paper `LayoutLM: Pre-training
141
142
    of Text and Layout for Document Image Understanding <https://arxiv.org/abs/1912.13318>`__ by Yiheng Xu, Minghao Li,
    Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
143
19. :doc:`Longformer <model_doc/longformer>` (from AllenAI) released with the paper `Longformer: The Long-Document
144
    Transformer <https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, Matthew E. Peters, Arman Cohan.
145
20. :doc:`LXMERT <model_doc/lxmert>` (from UNC Chapel Hill) released with the paper `LXMERT: Learning Cross-Modality
146
147
    Encoder Representations from Transformers for Open-Domain Question Answering <https://arxiv.org/abs/1908.07490>`__
    by Hao Tan and Mohit Bansal.
148
21. :doc:`MarianMT <model_doc/marian>` Machine translation models trained using `OPUS <http://opus.nlpl.eu/>`__ data by
149
150
    Jörg Tiedemann. The `Marian Framework <https://marian-nmt.github.io/>`__ is being developed by the Microsoft
    Translator Team.
151
22. :doc:`MBart <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Denoising Pre-training for
152
153
    Neural Machine Translation <https://arxiv.org/abs/2001.08210>`__ by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li,
    Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
154
23. :doc:`MT5 <model_doc/mt5>` (from Google AI) released with the paper `mT5: A massively multilingual pre-trained
Patrick von Platen's avatar
Patrick von Platen committed
155
156
    text-to-text transformer <https://arxiv.org/abs/2010.11934>`__ by Linting Xue, Noah Constant, Adam Roberts, Mihir
    Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
157
24. :doc:`Pegasus <model_doc/pegasus>` (from Google) released with the paper `PEGASUS: Pre-training with Extracted
158
159
    Gap-sentences for Abstractive Summarization <https://arxiv.org/abs/1912.08777>`__> by Jingqing Zhang, Yao Zhao,
    Mohammad Saleh and Peter J. Liu.
160
25. :doc:`ProphetNet <model_doc/prophetnet>` (from Microsoft Research) released with the paper `ProphetNet: Predicting
Lysandre's avatar
Lysandre committed
161
162
    Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan, Weizhen Qi,
    Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
163
26. :doc:`Reformer <model_doc/reformer>` (from Google Research) released with the paper `Reformer: The Efficient
164
    Transformer <https://arxiv.org/abs/2001.04451>`__ by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
165
27. :doc:`RoBERTa <model_doc/roberta>` (from Facebook), released together with the paper a `Robustly Optimized BERT
166
167
    Pretraining Approach <https://arxiv.org/abs/1907.11692>`__ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
    Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. ultilingual BERT into `DistilmBERT
168
169
    <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__ and a German version of
    DistilBERT.
170
28. :doc:`SqueezeBert <model_doc/squeezebert>` released with the paper `SqueezeBERT: What can computer vision teach NLP
Lysandre's avatar
Lysandre committed
171
172
    about efficient neural networks? <https://arxiv.org/abs/2006.11316>`__ by Forrest N. Iandola, Albert E. Shaw, Ravi
    Krishna, and Kurt W. Keutzer.
173
29. :doc:`T5 <model_doc/t5>` (from Google AI) released with the paper `Exploring the Limits of Transfer Learning with a
174
175
    Unified Text-to-Text Transformer <https://arxiv.org/abs/1910.10683>`__ by Colin Raffel and Noam Shazeer and Adam
    Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
176
30. :doc:`Transformer-XL <model_doc/transformerxl>` (from Google/CMU) released with the paper `Transformer-XL:
177
178
    Attentive Language Models Beyond a Fixed-Length Context <https://arxiv.org/abs/1901.02860>`__ by Zihang Dai*,
    Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
179
31. :doc:`XLM <model_doc/xlm>` (from Facebook) released together with the paper `Cross-lingual Language Model
180
    Pretraining <https://arxiv.org/abs/1901.07291>`__ by Guillaume Lample and Alexis Conneau.
181
32. :doc:`XLM-ProphetNet <model_doc/xlmprophetnet>` (from Microsoft Research) released with the paper `ProphetNet:
Lysandre's avatar
Lysandre committed
182
183
    Predicting Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan,
    Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
184
33. :doc:`XLM-RoBERTa <model_doc/xlmroberta>` (from Facebook AI), released together with the paper `Unsupervised
185
186
187
    Cross-lingual Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`__ by Alexis Conneau*, Kartikay
    Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke
    Zettlemoyer and Veselin Stoyanov.
188
34. :doc:`XLNet <model_doc/xlnet>` (from Google/CMU) released with the paper `​XLNet: Generalized Autoregressive
189
190
    Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`__ by Zhilin Yang*, Zihang Dai*, Yiming
    Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
LysandreJik's avatar
LysandreJik committed
191

Sylvain Gugger's avatar
Sylvain Gugger committed
192

193
194
.. _bigtable:

Sylvain Gugger's avatar
Sylvain Gugger committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
The table below represents the current support in the library for each of those models, whether they have a Python
tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in PyTorch,
TensorFlow and/or Flax.

..
    This table is updated automatically from the auto modules with `make fix-copies`. Do not update manually!

.. rst-class:: center-aligned-table

+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            Model            | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support |
+=============================+================+================+=================+====================+==============+
|           ALBERT            |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            BART             |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            BERT             |       ✅       |       ✅       |       ✅        |         ✅         |      ✅      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|       Bert Generation       |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         Blenderbot          |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            CTRL             |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          CamemBERT          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             DPR             |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           DeBERTa           |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         DistilBERT          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           ELECTRA           |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|       Encoder decoder       |       ❌       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| FairSeq Machine-Translation |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          FlauBERT           |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|     Funnel Transformer      |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           LXMERT            |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          LayoutLM           |       ✅       |       ✅       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         Longformer          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           Marian            |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         MobileBERT          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         OpenAI GPT          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|        OpenAI GPT-2         |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           Pegasus           |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         ProphetNet          |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             RAG             |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          Reformer           |       ✅       |       ✅       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          RetriBERT          |       ✅       |       ✅       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           RoBERTa           |       ✅       |       ✅       |       ✅        |         ✅         |      ✅      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         SqueezeBERT         |       ✅       |       ✅       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             T5              |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|       Transformer-XL        |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             XLM             |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         XLM-RoBERTa         |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|        XLMProphetNet        |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            XLNet            |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            mBART            |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             mT5             |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+


283
284
.. toctree::
    :maxdepth: 2
285
    :caption: Get started
286

Sylvain Gugger's avatar
Sylvain Gugger committed
287
    quicktour
288
    installation
Sylvain Gugger's avatar
Sylvain Gugger committed
289
    philosophy
Lysandre's avatar
Lysandre committed
290
    glossary
291
292
293

.. toctree::
    :maxdepth: 2
Sylvain Gugger's avatar
Sylvain Gugger committed
294
    :caption: Using 🤗 Transformers
295

Sylvain Gugger's avatar
Sylvain Gugger committed
296
297
    task_summary
    model_summary
Sylvain Gugger's avatar
Sylvain Gugger committed
298
    preprocessing
299
    training
300
    model_sharing
Sylvain Gugger's avatar
Sylvain Gugger committed
301
    tokenizer_summary
302
303
304
305
306
307
308
    multilingual

.. toctree::
    :maxdepth: 2
    :caption: Advanced guides

    pretrained_models
309
    examples
310
    custom_datasets
311
    notebooks
312
    converting_tensorflow_models
313
    migration
314
    contributing
315
    testing
Funtowicz Morgan's avatar
Funtowicz Morgan committed
316
    serialization
317
318
319
320
321
322

.. toctree::
    :maxdepth: 2
    :caption: Research

    bertology
323
    perplexity
324
    benchmarks
325

thomwolf's avatar
thomwolf committed
326
327
.. toctree::
    :maxdepth: 2
328
    :caption: Main Classes
thomwolf's avatar
thomwolf committed
329

Sylvain Gugger's avatar
Sylvain Gugger committed
330
    main_classes/callback
thomwolf's avatar
thomwolf committed
331
    main_classes/configuration
332
    main_classes/logging
thomwolf's avatar
thomwolf committed
333
334
    main_classes/model
    main_classes/optimizer_schedules
335
336
    main_classes/output
    main_classes/pipelines
LysandreJik's avatar
LysandreJik committed
337
    main_classes/processors
338
339
340
341
342
343
344
345
    main_classes/tokenizer
    main_classes/trainer

.. toctree::
    :maxdepth: 2
    :caption: Models

    model_doc/albert
thomwolf's avatar
thomwolf committed
346
    model_doc/auto
347
    model_doc/bart
348
    model_doc/barthez
349
    model_doc/bert
350
    model_doc/bertgeneration
Sam Shleifer's avatar
Sam Shleifer committed
351
    model_doc/blenderbot
Lysandre's avatar
Lysandre committed
352
    model_doc/camembert
353
    model_doc/ctrl
Pengcheng He's avatar
Pengcheng He committed
354
    model_doc/deberta
355
    model_doc/dialogpt
356
    model_doc/distilbert
Quentin Lhoest's avatar
Quentin Lhoest committed
357
    model_doc/dpr
358
359
360
    model_doc/electra
    model_doc/encoderdecoder
    model_doc/flaubert
361
    model_doc/fsmt
Sylvain Gugger's avatar
Sylvain Gugger committed
362
    model_doc/funnel
Minghao Li's avatar
Minghao Li committed
363
    model_doc/layoutlm
364
365
366
367
368
    model_doc/longformer
    model_doc/lxmert
    model_doc/marian
    model_doc/mbart
    model_doc/mobilebert
Patrick von Platen's avatar
Patrick von Platen committed
369
    model_doc/mt5
370
371
372
    model_doc/gpt
    model_doc/gpt2
    model_doc/pegasus
Weizhen's avatar
Weizhen committed
373
    model_doc/prophetnet
Sylvain Gugger's avatar
Sylvain Gugger committed
374
    model_doc/rag
375
376
377
    model_doc/reformer
    model_doc/retribert
    model_doc/roberta
378
    model_doc/squeezebert
379
380
381
    model_doc/t5
    model_doc/transformerxl
    model_doc/xlm
Weizhen's avatar
Weizhen committed
382
    model_doc/xlmprophetnet
383
384
385
386
387
388
389
    model_doc/xlmroberta
    model_doc/xlnet

.. toctree::
    :maxdepth: 2
    :caption: Internal Helpers

Sylvain Gugger's avatar
Sylvain Gugger committed
390
    internal/modeling_utils
391
    internal/pipelines_utils
392
    internal/tokenization_utils
Sylvain Gugger's avatar
Sylvain Gugger committed
393
    internal/trainer_utils
394
    internal/generation_utils