"...lm-evaluation-harness.git" did not exist on "9b0b15b1ccace3534ffbd13298c569869ce8eaf3"
test_modeling_common.py 33.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
Aymeric Augustin's avatar
Aymeric Augustin committed
17
import logging
18
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import random
20
import tempfile
thomwolf's avatar
thomwolf committed
21
22
import unittest

23
from transformers import is_torch_available
24

25
from .utils import require_torch, slow, torch_device
26

Aymeric Augustin's avatar
Aymeric Augustin committed
27

28
if is_torch_available():
thomwolf's avatar
thomwolf committed
29
    import torch
30
    import numpy as np
thomwolf's avatar
thomwolf committed
31

32
33
34
35
36
37
38
    from transformers import (
        AdaptiveEmbedding,
        PretrainedConfig,
        PreTrainedModel,
        BertModel,
        BertConfig,
        BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
39
        top_k_top_p_filtering,
40
    )
thomwolf's avatar
thomwolf committed
41

42

43
44
45
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
46
        if "_range" in key or "_std" in key or "initializer_factor" in key:
47
48
49
            setattr(configs_no_init, key, 0.0)
    return configs_no_init

thomwolf's avatar
thomwolf committed
50

51
52
53
54
55
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
56
    all_generative_model_classes = ()
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
    is_encoder_decoder = False

    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
72
            out_2 = outputs[0].cpu().numpy()
73
            out_2[np.isnan(out_2)] = 0
74

75
            with tempfile.TemporaryDirectory() as tmpdirname:
76
77
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
78
                model.to(torch_device)
79
                with torch.no_grad():
80
                    after_outputs = model(**inputs_dict)
thomwolf's avatar
thomwolf committed
81

82
83
84
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
85
86
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
87

88
89
90
91
92
93
94
95
96
97
98
99
100
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
                        param.data.mean().item(),
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                first = model(**inputs_dict)[0]
                second = model(**inputs_dict)[0]
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
sshleifer's avatar
sshleifer committed
121
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
122
123
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
124
125
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

        for model_class in self.all_model_classes:
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
142
            )
143
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
144

145
            if self.is_encoder_decoder:
Sam Shleifer's avatar
Sam Shleifer committed
146
147
148
149
150
151
152
153
154
155
156
                correct_outlen = (
                    4  # decoder_features_or_logits, decoder_attentions, encoder_features, encoder_attentions
                )
                decoder_attention_idx = 1
                if "lm_labels" in inputs_dict or "decoder_lm_labels" in inputs_dict:  # loss will come first
                    correct_outlen += 1  # compute loss
                    decoder_attention_idx += 1
                self.assertEqual(out_len, correct_outlen)

                decoder_attentions = outputs[decoder_attention_idx]
                self.assertIsInstance(decoder_attentions, (list, tuple))
157
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
158
                self.assertListEqual(
159
160
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
161
                )
thomwolf's avatar
thomwolf committed
162

163
            # Check attention is always last and order is fine
thomwolf's avatar
thomwolf committed
164
165
            config.output_attentions = True
            config.output_hidden_states = True
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, True)

            self_attentions = outputs[-1]
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )
thomwolf's avatar
thomwolf committed
181

182
183
    def test_torchscript(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
184

185
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
186

187
188
    def test_torchscript_output_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
189

190
191
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
192

193
194
    def test_torchscript_output_hidden_state(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
195

196
197
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
198

199
200
201
    def _create_and_check_torchscript(self, config, inputs_dict):
        if not self.test_torchscript:
            return
202

203
204
205
206
207
208
209
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = inputs_dict["input_ids"]  # Let's keep only input_ids
thomwolf's avatar
thomwolf committed
210

211
212
213
214
            try:
                traced_gpt2 = torch.jit.trace(model, inputs)
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
215

216
            with tempfile.TemporaryDirectory() as tmp_dir_name:
217
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
218

219
220
221
222
                try:
                    torch.jit.save(traced_gpt2, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
223

224
225
226
227
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
228

229
230
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
231

232
233
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
234

235
236
237
238
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
239

240
            models_equal = True
241
242
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
243
244
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
245

246
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
247

248
249
250
    def test_headmasking(self):
        if not self.test_head_masking:
            return
251

252
253
254
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
255

256
257
258
259
260
261
262
        config.output_attentions = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
263

264
265
266
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
267
                self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device,
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
            inputs = inputs_dict.copy()
            inputs["head_mask"] = head_mask

            outputs = model(**inputs)

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

    def test_head_pruning(self):
        if not self.test_pruning:
            return

        for model_class in self.all_model_classes:
307
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
308

309
310
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
311

312
313
314
315
316
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
317
318
319
320
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
321
322
323
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
                outputs = model(**inputs_dict)
324

325
            attentions = outputs[-1]
326

327
328
329
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
330

331
332
333
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
            return
LysandreJik's avatar
LysandreJik committed
334

335
        for model_class in self.all_model_classes:
336
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
337
338
339

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
340

341
342
343
344
345
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
346
347
348
349
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
350
            model.prune_heads(heads_to_prune)
351

352
            with tempfile.TemporaryDirectory() as temp_dir_name:
353
354
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
355
                model.to(torch_device)
356

357
358
359
360
361
362
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
363

364
365
366
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
            return
367

368
        for model_class in self.all_model_classes:
369
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
370

371
372
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
373

374
375
            config.output_attentions = True
            config.output_hidden_states = False
376

377
378
379
380
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
381
            config.pruned_heads = heads_to_prune
382

383
384
385
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
386

387
388
389
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
390

391
392
393
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
394

395
396
397
    def test_head_pruning_integration(self):
        if not self.test_pruning:
            return
398

399
        for model_class in self.all_model_classes:
400
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
401

402
403
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
404

405
406
            config.output_attentions = True
            config.output_hidden_states = False
407

408
409
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
410

411
412
413
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
414

415
416
417
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
418

419
420
421
422
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
423

424
            with tempfile.TemporaryDirectory() as temp_dir_name:
425
426
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
427
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
428

429
430
431
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
432

433
434
435
436
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
437

438
439
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
440

441
442
443
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
444

445
446
447
448
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
449

450
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
451

452
453
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
454

455
456
457
458
        for model_class in self.all_model_classes:
            config.output_hidden_states = True
            config.output_attentions = False
            model = model_class(config)
459
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
460
            model.eval()
thomwolf's avatar
thomwolf committed
461
            with torch.no_grad():
462
463
464
465
466
467
468
469
470
471
472
473
474
                outputs = model(**inputs_dict)
            hidden_states = outputs[-1]
            self.assertEqual(model.config.output_attentions, False)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [
                    self.model_tester.encoder_seq_length
                    if hasattr(self.model_tester, "encoder_seq_length")
                    else self.model_tester.seq_length,
                    self.model_tester.hidden_size,
                ],
475
            )
thomwolf's avatar
thomwolf committed
476

477
    def test_resize_tokens_embeddings(self):
478
        (original_config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
479
480
481
482
483
484
        if not self.test_resize_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
485
            model.to(torch_device)
486
487
488
489
490
491
492
493
494
495
496

            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
497
498
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**inputs_dict)
499
500
501
502
503
504
505

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

506
507
508
509
510
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            model(**inputs_dict)

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
    def test_correct_missing_keys(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            params_not_tied = list(model_not_tied.parameters())

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())

            # Check that the embedding layer and decoding layer are the same in size and in value
            self.assertGreater(len(params_not_tied), len(params_tied))
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertGreater(len(params_not_tied), len(params_tied))
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

    def test_inputs_embeds(self):
Sam Shleifer's avatar
Sam Shleifer committed
598

599
600
601
602
603
604
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.is_encoder_decoder:
            input_ids = inputs_dict["input_ids"]
            del inputs_dict["input_ids"]
        else:
            encoder_input_ids = inputs_dict["encoder_input_ids"]
Sam Shleifer's avatar
Sam Shleifer committed
605
            decoder_input_ids = inputs_dict.get("decoder_input_ids", encoder_input_ids)
606
            del inputs_dict["encoder_input_ids"]
Sam Shleifer's avatar
Sam Shleifer committed
607
            inputs_dict.pop("decoder_input_ids", None)
608
609
610

        for model_class in self.all_model_classes:
            model = model_class(config)
611
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
612
            model.eval()
613
614
615
616
617
618
619
620

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                inputs_dict["inputs_embeds"] = wte(input_ids)
            else:
                inputs_dict["encoder_inputs_embeds"] = wte(encoder_input_ids)
                inputs_dict["decoder_inputs_embeds"] = wte(decoder_input_ids)

thomwolf's avatar
thomwolf committed
621
            with torch.no_grad():
622
                model(**inputs_dict)
623

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    def test_lm_head_model_random_generate(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get(
            "input_ids", None
        )  # TODO (PVP): ugly workaround to make code work for t5 for the moment - has to changed when t5 is fixed.

        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            if config.bos_token_id is None:
                with self.assertRaises(AssertionError):
                    model.generate(max_length=5)
                # batch_size = 1
                self._check_generated_tokens(model.generate(input_ids))
                # batch_size = 1, num_beams > 1
                self._check_generated_tokens(model.generate(input_ids, num_beams=3))
            else:
                # batch_size = 1
                self._check_generated_tokens(model.generate(max_length=5))
                # batch_size = 1, num_beams > 1
                self._check_generated_tokens(model.generate(max_length=5, num_beams=3))

649
650
651
652
653
654
655
656
657
            with self.assertRaises(AssertionError):
                # generating multiple sequences when greedy no beam generation
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

658
659
660
            # batch_size > 1, sample
            self._check_generated_tokens(model.generate(input_ids, num_return_sequences=3))
            # batch_size > 1, greedy
661
            self._check_generated_tokens(model.generate(input_ids, do_sample=False))
662

663
664
665
666
667
668
669
670
671
672
673
674
            # batch_size > 1, num_beams > 1, sample
            self._check_generated_tokens(model.generate(input_ids, num_beams=3, num_return_sequences=3,))
            # batch_size > 1, num_beams > 1, greedy
            self._check_generated_tokens(
                model.generate(input_ids, do_sample=False, num_beams=3, num_return_sequences=3)
            )

    def _check_generated_tokens(self, output_ids):
        for token_id in output_ids[0].tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

675

676
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
677
678


thomwolf's avatar
thomwolf committed
679
def ids_tensor(shape, vocab_size, rng=None, name=None):
680
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
681
    if rng is None:
682
        rng = global_rng
thomwolf's avatar
thomwolf committed
683

thomwolf's avatar
thomwolf committed
684
685
686
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
687

thomwolf's avatar
thomwolf committed
688
689
690
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
691

692
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
693
694


695
696
697
698
699
700
701
702
703
704
705
706
707
def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

708
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
709
710


711
@require_torch
thomwolf's avatar
thomwolf committed
712
class ModelUtilsTest(unittest.TestCase):
713
    @slow
thomwolf's avatar
thomwolf committed
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
    def test_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839


@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                7.3534,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                5.4403,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))