run_prompt_creation.py 18.2 KB
Newer Older
sanchit-gandhi's avatar
sanchit-gandhi committed
1
import logging
sanchit-gandhi's avatar
sanchit-gandhi committed
2
import os
sanchit-gandhi's avatar
sanchit-gandhi committed
3
import shutil
sanchit-gandhi's avatar
sanchit-gandhi committed
4
import sys
sanchit-gandhi's avatar
sanchit-gandhi committed
5
6
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
sanchit-gandhi's avatar
sanchit-gandhi committed
7
8
9

import torch
from accelerate import Accelerator
sanchit-gandhi's avatar
sanchit-gandhi committed
10
from datasets import load_dataset, DatasetDict
sanchit-gandhi's avatar
sanchit-gandhi committed
11
12
13
14
15
16
17
18
19
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
)

sanchit-gandhi's avatar
sanchit-gandhi committed
20
21
22

logger = logging.getLogger(__name__)

sanchit-gandhi's avatar
sanchit-gandhi committed
23

sanchit-gandhi's avatar
sanchit-gandhi committed
24
25
26
27
28
@dataclass
class ModelArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
sanchit-gandhi's avatar
sanchit-gandhi committed
29

sanchit-gandhi's avatar
sanchit-gandhi committed
30
31
32
    model_name_or_path: str = field(
        metadata={"help": "The name of the model to use (via the transformers library) for the prompt annotation."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
33
34
35
    per_device_eval_batch_size: int = field(
        metadata={"help": "The per-device batch size to use for inference."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    model_variant: str = field(
        default=None,
        metadata={"help": "If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. "},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    torch_dtype: Optional[str] = field(
        default="float16",
        metadata={
            "help": (
                "Floating-point format in which the model weights should be initialized"
                " and the computations run. Choose one of `[float32, float16, bfloat16]`."
            )
        },
    )
    attn_implementation: Optional[str] = field(
        default="sdpa",
        metadata={"help": "Which attn type to use: ['eager', 'sdpa', 'flash_attention_2']"},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
61
62
63
64
65
66
    load_in_8bit: Optional[bool] = field(
        default=False, metadata={"help": "Whether to use 8-bit precision for inference."}
    )
    load_in_4bit: Optional[bool] = field(
        default=False, metadata={"help": "Whether to use 4-bit precision for inference."}
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
67
68
69
70
    bnb_4bit_quant_type: Optional[str] = field(
        default="nf4", metadata={"help": "precise the quantization type (fp4 or nf4)"}
    )
    use_bnb_nested_quant: Optional[bool] = field(default=False, metadata={"help": "use nested quantization"})
sanchit-gandhi's avatar
sanchit-gandhi committed
71
    trust_remote_code: Optional[bool] = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
72
73
74
75
76
77
78
79
80
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
                "execute code present on the Hub on your local machine."
            )
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    use_fast_tokenizer: Optional[bool] = field(
        default=True, metadata={"help": "Use fast tokenizer for encoding/decoding input ids"}
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    do_sample: Optional[bool] = field(default=True, metadata={"help": "Whether to use sampling mode for generation"})
    temperature: Optional[float] = field(default=0.6, metadata={"help": "Temperature for sampling-based generation"})
    max_new_tokens: Optional[int] = field(
        default=256, metadata={"help": "Maximum number of new tokens during generation"}
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
98
99
100
    compile_generate: Optional[bool] = field(
        default=False, metadata={"help": "Whether to compile the forward pass (not sampling) in generate."}
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
101
102
103
104
105
106
107
108


@dataclass
class DataArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

sanchit-gandhi's avatar
sanchit-gandhi committed
109
    output_dir: str = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
110
        metadata={
sanchit-gandhi's avatar
sanchit-gandhi committed
111
112
            "help": "Where to save the processed dataset to disk. If unspecified, uses a 'pretty' version of the "
            "original dataset name. E.g. 'facebook/voxpopuli' will be saved under 'voxpopuli'."
sanchit-gandhi's avatar
sanchit-gandhi committed
113
114
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
115
116
117
118
    dataset_name: str = field(
        default=None,
        metadata={"help": "The name of the dataset to use (via the datasets library)"},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
119
120
121
122
123
124
125
126
127
128
129
130
    dataset_config_name: Optional[str] = field(
        default=None,
        metadata={"help": "The configuration name of the dataset to use (via the datasets library)."},
    )
    dataset_split_name: Optional[str] = field(
        default=None,
        metadata={"help": "The split name of the dataset to use (via the datasets library)."},
    )
    dataset_cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to cache directory for saving and loading datasets"},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
131
    max_eval_samples: Optional[int] = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
132
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
133
        metadata={"help": "Maximum number of samples for generation - use for debugging purposes."},
sanchit-gandhi's avatar
sanchit-gandhi committed
134
135
136
137
138
139
140
141
142
    )
    overwrite_cache: bool = field(
        default=False,
        metadata={"help": "Overwrite the cached training and evaluation sets"},
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    dataloader_num_workers: Optional[int] = field(
        default=0,
        metadata={"help": "The number of processes to use for the dataloader."},
    )
    push_to_hub: Optional[bool] = field(
        default=False,
        metadata={"help": "Whether or not to push the processed dataset to the Hub."},
    )
    hub_dataset_id: Optional[str] = field(
        default=None,
        metadata={"help": "Repository namespace if pushing to the Hugging Face Hub."},
    )
    overwrite_output_dir: Optional[bool] = field(
        default=False,
        metadata={"help": "Overwrite the content of the output directory each time the script is run."},
    )

    def __post_init__(self):
        if self.push_to_hub and self.hub_dataset_id is None:
            raise ValueError("You must specify the `hub_dataset_id` when setting `--push_to_hub=True`")
sanchit-gandhi's avatar
sanchit-gandhi committed
163

sanchit-gandhi's avatar
sanchit-gandhi committed
164
165

def get_quantization_config(model_args: ModelArguments) -> Union[BitsAndBytesConfig, None]:
sanchit-gandhi's avatar
sanchit-gandhi committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    if model_args.load_in_4bit:
        compute_dtype = torch.float16
        if model_args.torch_dtype not in {"auto", None}:
            compute_dtype = getattr(torch, model_args.torch_dtype)

        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=compute_dtype,
            bnb_4bit_quant_type=model_args.bnb_4bit_quant_type,
            bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant,
        )
    elif model_args.load_in_8bit:
        quantization_config = BitsAndBytesConfig(
            load_in_8bit=True,
        )
    else:
        quantization_config = None

    return quantization_config

sanchit-gandhi's avatar
sanchit-gandhi committed
186

sanchit-gandhi's avatar
sanchit-gandhi committed
187
188
189
190
def get_current_device() -> int:
    """Get the current device. For GPU we return the local process index to enable multiple GPU training."""
    return Accelerator().local_process_index if torch.cuda.is_available() else "cpu"

sanchit-gandhi's avatar
sanchit-gandhi committed
191
192

def get_kbit_device_map() -> Union[Dict[str, int], None]:
sanchit-gandhi's avatar
sanchit-gandhi committed
193
194
195
    """Useful for running inference with quantized models by setting `device_map=get_peft_device_map()`"""
    return {"": get_current_device()} if torch.cuda.is_available() else None

sanchit-gandhi's avatar
sanchit-gandhi committed
196
197
198
199

@dataclass
class DataCollatorWithPadding:
    """
sanchit-gandhi's avatar
sanchit-gandhi committed
200
    Data collator that will dynamically pad the inputs received to the longest sequence in the batch.
sanchit-gandhi's avatar
sanchit-gandhi committed
201
202
203
204
205
206
207
208
209
210
211
212
    """

    tokenizer: Any

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        input_ids = {"input_ids": [feature["input_ids"] for feature in features]}
        batch = self.tokenizer.pad(input_ids, return_tensors="pt", padding="longest", return_attention_mask=True)
        return batch


sanchit-gandhi's avatar
sanchit-gandhi committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def main():
    # 1. Parse input arguments
    parser = HfArgumentParser((ModelArguments, DataArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args = parser.parse_args_into_dataclasses()

    # 2. Setup logging
    # Make one log on every process with the configuration for debugging.
    logger.setLevel(logging.INFO)
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
232
233
234
235
236
237
    accelerator = Accelerator()

    if data_args.overwrite_output_dir and os.path.exists(data_args.output_dir) and os.path.isdir(data_args.output_dir):
        logger.info("Cleaning output dir from previous run...")
        shutil.rmtree(data_args.output_dir)

sanchit-gandhi's avatar
sanchit-gandhi committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    # 3. Load annotated dataset
    logger.info("*** Load annotated dataset ***")
    if data_args.dataset_split_name is not None:
        raw_datasets = DatasetDict()
        data_splits = data_args.dataset_split_name.split("+")
        # load on a split-wise basis
        for split in data_splits:
            raw_datasets[split] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=split,
                cache_dir=model_args.cache_dir,
                token=model_args.token,
                num_proc=data_args.preprocessing_num_workers,
            )
    else:
        # load all splits for annotation
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            token=model_args.token,
            num_proc=data_args.preprocessing_num_workers,
        )

    raw_datasets_features = set(raw_datasets[next(iter(raw_datasets))].features.keys())

    if data_args.max_eval_samples is not None:
        for split in raw_datasets:
            raw_datasets[split] = raw_datasets[split].select(range(data_args.max_eval_samples))

    # TODO(SG): add accent
    EXPECTED_COLUMNS = {"gender", "pitch", "noise", "reverberation", "speech_monotony", "speaking_rate"}
    if not EXPECTED_COLUMNS.issubset(raw_datasets_features):
        missing_columns = EXPECTED_COLUMNS - raw_datasets_features
        raise ValueError(
            f"Missing columns {missing_columns} from the dataset features. Got dataset features {raw_datasets_features}"
        )

    # 4. Load pre-trained model
sanchit-gandhi's avatar
sanchit-gandhi committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    logger.info("*** Load pretrained model ***")
    torch_dtype = (
        model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
    )
    quantization_config = get_quantization_config(model_args)

    model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path,
        revision=model_args.model_revision,
        variant=model_args.model_variant,
        trust_remote_code=model_args.trust_remote_code,
        attn_implementation=model_args.attn_implementation,
        torch_dtype=torch_dtype,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
        low_cpu_mem_usage=True,
sanchit-gandhi's avatar
sanchit-gandhi committed
294
295
        token=model_args.token,
    ).eval()
sanchit-gandhi's avatar
sanchit-gandhi committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

    if model_args.compile_generate:
        if not callable(getattr(model, "_setup_cache", None)):
            raise ValueError(
                f"Static k/v cache is not compatible with the model {model.__class__.__name__}. Set `--compile_generate=False"
                "for dynamic k/v cache"
            )
        model.generation_config.cache_implementation = "static"
        model._forward = model.forward
        compiled_forward = torch.compile(model.forward)

        def compiled(func, input_ids, **kwargs):
            return func(input_ids, **kwargs)

        def call(input_ids, **kwargs):
            if input_ids.shape[-1] == 1:
                return compiled(compiled_forward, input_ids, **kwargs)

            return model._forward(input_ids, **kwargs)

        model.forward = call

sanchit-gandhi's avatar
sanchit-gandhi committed
318
319
320
321
322
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path,
        revision=model_args.model_revision,
        trust_remote_code=model_args.trust_remote_code,
        use_fast=model_args.use_fast_tokenizer,
sanchit-gandhi's avatar
sanchit-gandhi committed
323
        padding_side="left",
sanchit-gandhi's avatar
sanchit-gandhi committed
324
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
325
326
327
    if tokenizer.pad_token_id is None:
        tokenizer.pad_token_id = tokenizer.bos_token_id
        model.generation_config.pad_token_id = model.generation_config.eos_token_id
sanchit-gandhi's avatar
sanchit-gandhi committed
328

sanchit-gandhi's avatar
sanchit-gandhi committed
329
330
331
332
333
334

    PROMPT = """ We have seven keywords that describe different attributes of an audio sample spoken by a given speaker: the speaker's gender, the speaker's accent, the amount of reverberation in the sample (high or low reverberation), the amount of noise in the sample (how clear or noisy), how monotone or animated the sample is, the speaker's pitch (high or low voice), the speaker's speed (how fast or slow the speaker is speaking).
    Given these keywords, form a coherent sentence that summarises the seven attributes in a meaningful way. You can change the order of the keywords in the sentence and use common synonyms for these words, provided that the sentence summarises the attributes clearly. Keep the sentence simple - don't introduce additional information other than the keywords provided. Only return the generated sentence, not any other assistant remarks.
    For example, given the following descriptors: 'female', 'Hungarian', 'slightly roomy sounding', 'fairly noisy', 'quite monotone', 'fairly low pitch', 'very slowly', a valid sentence would be: 'a woman with a deep voice speaking slowly and somewhat monotonously with a Hungarian accent in an echoey room with background noise'. Note how the seven attributes have been combined together in a simple sentence, with the ordering changed but no additional information added.
    For the descriptors: {gender}, {accent}, {reverberation}, {noise}, {monotony}, {pitch}, {speaking_rate}, the corresponding sentence is:"""

sanchit-gandhi's avatar
sanchit-gandhi committed
335
336
337
338
339
340
    SUBSET_PROMPT = """ We have six keywords that describe different attributes of an audio sample spoken by a given speaker: the speaker's gender, the amount of reverberation in the sample (high or low reverberation), the amount of noise in the sample (how clear or noisy), how monotone or animated the sample is, the speaker's pitch (high or low voice), the speaker's speed (how fast or slow the speaker is speaking).
    Given these keywords, form a coherent sentence that summarises the six attributes in a meaningful way. You can change the order of the keywords in the sentence and use common synonyms for these words, provided that the sentence summarises the attributes clearly. Keep the sentence simple - don't introduce additional information other than the keywords provided. Only return the generated sentence, not any other assistant remarks.
    For example, given the following descriptors: 'female', 'slightly roomy sounding', 'fairly noisy', 'quite monotone', 'fairly low pitch', 'very slowly', a valid sentence would be: 'a woman with a deep voice speaking slowly and somewhat monotonously in an echoey room with background noise'. Note how the six attributes have been combined together in a simple sentence, with the ordering changed but no additional information added.
    For the descriptors: {gender}, {accent}, {reverberation}, {noise}, {monotony}, {pitch}, {speaking_rate}, the corresponding sentence is:"""


sanchit-gandhi's avatar
sanchit-gandhi committed
341
    def prepare_dataset(sample):
sanchit-gandhi's avatar
sanchit-gandhi committed
342
        sample_prompt = SUBSET_PROMPT
sanchit-gandhi's avatar
sanchit-gandhi committed
343
344
345
346
347
348
349
350
351
        for key in EXPECTED_COLUMNS:
            sample_prompt = sample_prompt.replace(f"[{key}]", sample[key])
        sample_prompt = [{"role": "user", "content": sample_prompt}]
        token_ids = tokenizer.apply_chat_template(sample_prompt)
        sample["input_ids"] = token_ids
        return sample

    with accelerator.main_process_first():
        vectorized_datasets = raw_datasets.map(
sanchit-gandhi's avatar
sanchit-gandhi committed
352
            prepare_dataset, num_proc=data_args.preprocessing_num_workers, desc="Preparing prompts"
sanchit-gandhi's avatar
sanchit-gandhi committed
353
354
355
        )

    # Prepare everything with our `accelerator`
sanchit-gandhi's avatar
sanchit-gandhi committed
356
357
    model = accelerator.prepare(model)
    data_collator = DataCollatorWithPadding(tokenizer)
sanchit-gandhi's avatar
sanchit-gandhi committed
358
359
360
361
362
363
364
365
366
367
368
369

    def generate_step(batch):
        output_ids = accelerator.unwrap_model(model).generate(
            batch["input_ids"],
            attention_mask=batch["attention_mask"],
            do_sample=model_args.do_sample,
            temperature=model_args.temperature,
            max_new_tokens=model_args.max_new_tokens,
        )
        output_ids = accelerator.pad_across_processes(output_ids, dim=1, pad_index=tokenizer.pad_token_id)
        return output_ids

sanchit-gandhi's avatar
sanchit-gandhi committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    for split in vectorized_datasets:
        data_loader = DataLoader(
            vectorized_datasets[split],
            batch_size=model_args.per_device_eval_batch_size,
            collate_fn=data_collator,
            num_workers=data_args.dataloader_num_workers,
            pin_memory=True,
        )
        data_loader = accelerator.prepare(data_loader)

        all_generated_ids = []
        for batch in tqdm(data_loader, disable=not accelerator.is_local_main_process):
            generated_ids = generate_step(batch)
            all_generated_ids.extend(generated_ids.cpu())

        def postprocess_dataset(sample, idx):
            prompt_text = tokenizer.decode(sample["input_ids"], skip_special_tokens=True)
            generated_text = tokenizer.decode(all_generated_ids[idx], skip_special_tokens=True)
            sample["text_description"] = generated_text[len(prompt_text) :]
            return sample

        if accelerator.is_main_process:
            vectorized_datasets[split] = vectorized_datasets[split].map(
                postprocess_dataset,
                num_proc=data_args.preprocessing_num_workers,
                desc="Postprocessing dataset",
                remove_columns=["input_ids"],
                with_indices=True,
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
399
400
401
402
403
404
405
406
407
408
409

    accelerator.end_training()

    if accelerator.is_main_process:
        vectorized_datasets.save_to_disk(data_args.output_dir)
        if data_args.push_to_hub:
            vectorized_datasets.push_to_hub(data_args.hub_dataset_id)


if __name__ == "__main__":
    main()