"official/benchmark/transformer_benchmark.py" did not exist on "85956b16fbb47c0c10008595f427b89277bc371c"
run_prompt_creation.py 17.1 KB
Newer Older
sanchit-gandhi's avatar
sanchit-gandhi committed
1
import logging
sanchit-gandhi's avatar
sanchit-gandhi committed
2
import os
sanchit-gandhi's avatar
sanchit-gandhi committed
3
import shutil
sanchit-gandhi's avatar
sanchit-gandhi committed
4
import sys
sanchit-gandhi's avatar
sanchit-gandhi committed
5
6
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
sanchit-gandhi's avatar
sanchit-gandhi committed
7
8
9
10

import torch
from accelerate import Accelerator
from datasets import load_dataset
sanchit-gandhi's avatar
sanchit-gandhi committed
11
12
13
14
15
16
17
18
19
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
)

sanchit-gandhi's avatar
sanchit-gandhi committed
20
21
22

logger = logging.getLogger(__name__)

sanchit-gandhi's avatar
sanchit-gandhi committed
23

sanchit-gandhi's avatar
sanchit-gandhi committed
24
25
26
27
28
@dataclass
class ModelArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
sanchit-gandhi's avatar
sanchit-gandhi committed
29

sanchit-gandhi's avatar
sanchit-gandhi committed
30
31
32
    model_name_or_path: str = field(
        metadata={"help": "The name of the model to use (via the transformers library) for the prompt annotation."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
33
34
35
    per_device_eval_batch_size: int = field(
        metadata={"help": "The per-device batch size to use for inference."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    model_variant: str = field(
        default=None,
        metadata={"help": "If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. "},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    torch_dtype: Optional[str] = field(
        default="float16",
        metadata={
            "help": (
                "Floating-point format in which the model weights should be initialized"
                " and the computations run. Choose one of `[float32, float16, bfloat16]`."
            )
        },
    )
    attn_implementation: Optional[str] = field(
        default="sdpa",
        metadata={"help": "Which attn type to use: ['eager', 'sdpa', 'flash_attention_2']"},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
61
62
63
64
65
66
    load_in_8bit: Optional[bool] = field(
        default=False, metadata={"help": "Whether to use 8-bit precision for inference."}
    )
    load_in_4bit: Optional[bool] = field(
        default=False, metadata={"help": "Whether to use 4-bit precision for inference."}
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
67
68
69
70
    bnb_4bit_quant_type: Optional[str] = field(
        default="nf4", metadata={"help": "precise the quantization type (fp4 or nf4)"}
    )
    use_bnb_nested_quant: Optional[bool] = field(default=False, metadata={"help": "use nested quantization"})
sanchit-gandhi's avatar
sanchit-gandhi committed
71
    trust_remote_code: Optional[bool] = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
72
73
74
75
76
77
78
79
80
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
                "execute code present on the Hub on your local machine."
            )
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    use_fast_tokenizer: Optional[bool] = field(
        default=True, metadata={"help": "Use fast tokenizer for encoding/decoding input ids"}
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    do_sample: Optional[bool] = field(default=True, metadata={"help": "Whether to use sampling mode for generation"})
    temperature: Optional[float] = field(default=0.6, metadata={"help": "Temperature for sampling-based generation"})
    max_new_tokens: Optional[int] = field(
        default=256, metadata={"help": "Maximum number of new tokens during generation"}
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
98
99
100
101
102
103
104
105


@dataclass
class DataArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

sanchit-gandhi's avatar
sanchit-gandhi committed
106
    output_dir: str = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
107
        metadata={
sanchit-gandhi's avatar
sanchit-gandhi committed
108
109
            "help": "Where to save the processed dataset to disk. If unspecified, uses a 'pretty' version of the "
            "original dataset name. E.g. 'facebook/voxpopuli' will be saved under 'voxpopuli'."
sanchit-gandhi's avatar
sanchit-gandhi committed
110
111
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
112
113
114
115
    dataset_name: str = field(
        default=None,
        metadata={"help": "The name of the dataset to use (via the datasets library)"},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
116
117
118
119
120
121
122
123
124
125
126
127
    dataset_config_name: Optional[str] = field(
        default=None,
        metadata={"help": "The configuration name of the dataset to use (via the datasets library)."},
    )
    dataset_split_name: Optional[str] = field(
        default=None,
        metadata={"help": "The split name of the dataset to use (via the datasets library)."},
    )
    dataset_cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to cache directory for saving and loading datasets"},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
128
    max_eval_samples: Optional[int] = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
129
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
130
        metadata={"help": "Maximum number of samples for generation - use for debugging purposes."},
sanchit-gandhi's avatar
sanchit-gandhi committed
131
132
133
134
135
136
137
138
139
    )
    overwrite_cache: bool = field(
        default=False,
        metadata={"help": "Overwrite the cached training and evaluation sets"},
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    dataloader_num_workers: Optional[int] = field(
        default=0,
        metadata={"help": "The number of processes to use for the dataloader."},
    )
    push_to_hub: Optional[bool] = field(
        default=False,
        metadata={"help": "Whether or not to push the processed dataset to the Hub."},
    )
    hub_dataset_id: Optional[str] = field(
        default=None,
        metadata={"help": "Repository namespace if pushing to the Hugging Face Hub."},
    )
    overwrite_output_dir: Optional[bool] = field(
        default=False,
        metadata={"help": "Overwrite the content of the output directory each time the script is run."},
    )

    def __post_init__(self):
        if self.push_to_hub and self.hub_dataset_id is None:
            raise ValueError("You must specify the `hub_dataset_id` when setting `--push_to_hub=True`")
sanchit-gandhi's avatar
sanchit-gandhi committed
160

sanchit-gandhi's avatar
sanchit-gandhi committed
161
162

def get_quantization_config(model_args: ModelArguments) -> Union[BitsAndBytesConfig, None]:
sanchit-gandhi's avatar
sanchit-gandhi committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    if model_args.load_in_4bit:
        compute_dtype = torch.float16
        if model_args.torch_dtype not in {"auto", None}:
            compute_dtype = getattr(torch, model_args.torch_dtype)

        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=compute_dtype,
            bnb_4bit_quant_type=model_args.bnb_4bit_quant_type,
            bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant,
        )
    elif model_args.load_in_8bit:
        quantization_config = BitsAndBytesConfig(
            load_in_8bit=True,
        )
    else:
        quantization_config = None

    return quantization_config

sanchit-gandhi's avatar
sanchit-gandhi committed
183

sanchit-gandhi's avatar
sanchit-gandhi committed
184
185
186
187
def get_current_device() -> int:
    """Get the current device. For GPU we return the local process index to enable multiple GPU training."""
    return Accelerator().local_process_index if torch.cuda.is_available() else "cpu"

sanchit-gandhi's avatar
sanchit-gandhi committed
188
189

def get_kbit_device_map() -> Union[Dict[str, int], None]:
sanchit-gandhi's avatar
sanchit-gandhi committed
190
191
192
    """Useful for running inference with quantized models by setting `device_map=get_peft_device_map()`"""
    return {"": get_current_device()} if torch.cuda.is_available() else None

sanchit-gandhi's avatar
sanchit-gandhi committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

@dataclass
class DataCollatorWithPadding:
    """
    Data collator that will dynamically pad the inputs received.
    """

    tokenizer: Any

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        input_ids = {"input_ids": [feature["input_ids"] for feature in features]}
        batch = self.tokenizer.pad(input_ids, return_tensors="pt", padding="longest", return_attention_mask=True)
        return batch


sanchit-gandhi's avatar
sanchit-gandhi committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
def main():
    # 1. Parse input arguments
    parser = HfArgumentParser((ModelArguments, DataArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args = parser.parse_args_into_dataclasses()

    # 2. Setup logging
    # Make one log on every process with the configuration for debugging.
    logger.setLevel(logging.INFO)
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
229
230
231
232
233
234
    accelerator = Accelerator()

    if data_args.overwrite_output_dir and os.path.exists(data_args.output_dir) and os.path.isdir(data_args.output_dir):
        logger.info("Cleaning output dir from previous run...")
        shutil.rmtree(data_args.output_dir)

sanchit-gandhi's avatar
sanchit-gandhi committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    # 3. Load pre-trained model
    logger.info("*** Load pretrained model ***")
    torch_dtype = (
        model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
    )
    quantization_config = get_quantization_config(model_args)

    model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path,
        revision=model_args.model_revision,
        variant=model_args.model_variant,
        trust_remote_code=model_args.trust_remote_code,
        attn_implementation=model_args.attn_implementation,
        torch_dtype=torch_dtype,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
        low_cpu_mem_usage=True,
sanchit-gandhi's avatar
sanchit-gandhi committed
252
253
        token=model_args.token,
    ).eval()
sanchit-gandhi's avatar
sanchit-gandhi committed
254
255
256
257
258
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path,
        revision=model_args.model_revision,
        trust_remote_code=model_args.trust_remote_code,
        use_fast=model_args.use_fast_tokenizer,
sanchit-gandhi's avatar
sanchit-gandhi committed
259
        padding_side="left",
sanchit-gandhi's avatar
sanchit-gandhi committed
260
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
261
262
263
    if tokenizer.pad_token_id is None:
        tokenizer.pad_token_id = tokenizer.bos_token_id
        model.generation_config.pad_token_id = model.generation_config.eos_token_id
sanchit-gandhi's avatar
sanchit-gandhi committed
264
265

    # 4. Load annotation dataset
sanchit-gandhi's avatar
sanchit-gandhi committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    raw_datasets = load_dataset(
        data_args.dataset_name,
        data_args.dataset_config_name,
        split=data_args.dataset_split_name,
        cache_dir=model_args.cache_dir,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
        num_proc=data_args.preprocessing_num_workers,
    )
    raw_datasets_features = set(raw_datasets.features.keys())
    if data_args.max_eval_samples:
        raw_datasets = raw_datasets.select(range(data_args.max_eval_samples))

    EXPECTED_COLUMNS = {"speaking_rate", "noise", "reverberation", "speech_monotony"}
    if not EXPECTED_COLUMNS.issubset(raw_datasets_features):
        missing_columns = EXPECTED_COLUMNS - raw_datasets_features
        raise ValueError(
            f"Missing columns {missing_columns} from the dataset features. Got dataset features {raw_datasets_features}"
        )

    PROMPT = """ We have seven keywords that describe different attributes of an audio sample spoken by a given speaker: the speaker's gender, the speaker's accent, the amount of reverberation in the sample (high or low reverberation), the amount of noise in the sample (how clear or noisy), how monotone or animated the sample is, the speaker's pitch (high or low voice), the speaker's speed (how fast or slow the speaker is speaking).
    Given these keywords, form a coherent sentence that summarises the seven attributes in a meaningful way. You can change the order of the keywords in the sentence and use common synonyms for these words, provided that the sentence summarises the attributes clearly. Keep the sentence simple - don't introduce additional information other than the keywords provided. Only return the generated sentence, not any other assistant remarks.
    For example, given the following descriptors: 'female', 'Hungarian', 'slightly roomy sounding', 'fairly noisy', 'quite monotone', 'fairly low pitch', 'very slowly', a valid sentence would be: 'a woman with a deep voice speaking slowly and somewhat monotonously with a Hungarian accent in an echoey room with background noise'. Note how the seven attributes have been combined together in a simple sentence, with the ordering changed but no additional information added.
    For the descriptors: {gender}, {accent}, {reverberation}, {noise}, {monotony}, {pitch}, {speaking_rate}, the corresponding sentence is:"""

    def prepare_dataset(sample):
        sample_prompt = PROMPT.replace("{gender}", sample["gender"])
        sample_prompt = sample_prompt.replace("{accent}", sample["accent"])
        sample_prompt = sample_prompt.replace("{reverberation}", sample["reverberation"])
        sample_prompt = sample_prompt.replace("{noise}", sample["noise"])
        sample_prompt = sample_prompt.replace("{monotony}", sample["monotony"])
        sample_prompt = sample_prompt.replace("{pitch}", sample["pitch"])
        sample_prompt = sample_prompt.replace("{speaking_rate}", sample["speaking_rate"])
        sample_prompt = [{"role": "user", "content": sample_prompt}]
        token_ids = tokenizer.apply_chat_template(sample_prompt)
        sample["prompt_ids"] = token_ids
        return sample

    DUMMY_PROMPT = """ We have seven keywords that describe different attributes of an audio sample spoken by a given speaker: the speaker's gender, the speaker's accent, the amount of reverberation in the sample (high or low reverberation), the amount of noise in the sample (how clear or noisy), how monotone or animated the sample is, the speaker's pitch (high or low voice), the speaker's speed (how fast or slow the speaker is speaking).
    Given these keywords, form a coherent sentence that summarises the seven attributes in a meaningful way. You can change the order of the keywords in the sentence and use common synonyms for these words, provided that the sentence summarises the attributes clearly. Keep the sentence simple - don't introduce additional information other than the keywords provided. Only return the generated sentence, not any other assistant remarks.
    For example, given the following descriptors: 'female', 'Hungarian', 'slightly roomy sounding', 'fairly noisy', 'quite monotone', 'fairly low pitch', 'very slowly', a valid sentence would be: 'a woman with a deep voice speaking slowly and somewhat monotonously with a Hungarian accent in an echoey room with background noise'. Note how the seven attributes have been combined together in a simple sentence, with the ordering changed but no additional information added.
    For the descriptors: [gender], [accent], [reverberation], [noise], [monotony], [pitch], [speaking_rate], the corresponding sentence is:"""

    def prepare_dummy_dataset(sample):
        sample_prompt = DUMMY_PROMPT
        for key in EXPECTED_COLUMNS:
            sample_prompt = sample_prompt.replace(f"[{key}]", sample[key])
        sample_prompt = [{"role": "user", "content": sample_prompt}]
        token_ids = tokenizer.apply_chat_template(sample_prompt)
        sample["input_ids"] = token_ids
        return sample

    with accelerator.main_process_first():
        vectorized_datasets = raw_datasets.map(
            prepare_dummy_dataset, num_proc=data_args.preprocessing_num_workers, desc="Preparing prompts"
        )

    data_collator = DataCollatorWithPadding(tokenizer)
    data_loader = DataLoader(
        vectorized_datasets,
        batch_size=model_args.per_device_eval_batch_size,
        collate_fn=data_collator,
        num_workers=data_args.dataloader_num_workers,
        pin_memory=True,
    )

    # Prepare everything with our `accelerator`
    model, data_loader = accelerator.prepare(model, data_loader)

    def generate_step(batch):
        output_ids = accelerator.unwrap_model(model).generate(
            batch["input_ids"],
            attention_mask=batch["attention_mask"],
            do_sample=model_args.do_sample,
            temperature=model_args.temperature,
            max_new_tokens=model_args.max_new_tokens,
        )
        output_ids = accelerator.pad_across_processes(output_ids, dim=1, pad_index=tokenizer.pad_token_id)
        return output_ids

    all_generated_ids = []
    for batch in tqdm(data_loader, disable=not accelerator.is_local_main_process):
        generated_ids = generate_step(batch)
        all_generated_ids.extend(generated_ids.cpu())

    accelerator.end_training()

    def postprocess_dataset(sample, idx):
        prompt_text = tokenizer.decode(sample["input_ids"], skip_special_tokens=True)
        generated_text = tokenizer.decode(all_generated_ids[idx], skip_special_tokens=True)
        sample["text_description"] = generated_text[len(prompt_text) :]
        return sample

    if accelerator.is_main_process:
        vectorized_datasets = vectorized_datasets.map(
            postprocess_dataset,
            num_proc=data_args.preprocessing_num_workers,
            desc="Postprocessing dataset",
            remove_columns=["input_ids"],
            with_indices=True,
        )
        vectorized_datasets.save_to_disk(data_args.output_dir)
        if data_args.push_to_hub:
            vectorized_datasets.push_to_hub(data_args.hub_dataset_id)


if __name__ == "__main__":
    main()