run_dropout_sweep.yaml 2.21 KB
Newer Older
sanchit-gandhi's avatar
sanchit-gandhi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
command:
  - python3
  - ${program}
  - --fp16
  - --fp16_full_eval
  - --do_train
  - --do_eval
  - --trust_remote_code
  - --overwrite_output_dir
  - --ignore_mismatched_sizes
  - --gradient_checkpointing
  - ${args}
method: random
metric:
  goal: maximize
  name: eval/accuracy
parameters:
  model_name_or_path:
    value: facebook/mms-lid-126
  train_dataset_name:
sanchit-gandhi's avatar
sanchit-gandhi committed
21
    value: parler-tts/concatenated-normalized-accent-dataset
sanchit-gandhi's avatar
sanchit-gandhi committed
22
  train_dataset_config_name:
sanchit-gandhi's avatar
sanchit-gandhi committed
23
    value: default
sanchit-gandhi's avatar
sanchit-gandhi committed
24
  train_split_name:
sanchit-gandhi's avatar
sanchit-gandhi committed
25
    value: train
sanchit-gandhi's avatar
sanchit-gandhi committed
26
  train_label_column_name:
sanchit-gandhi's avatar
sanchit-gandhi committed
27
    value: labels
sanchit-gandhi's avatar
sanchit-gandhi committed
28
  eval_dataset_name:
sanchit-gandhi's avatar
sanchit-gandhi committed
29
    value: parler-tts/concatenated-normalized-accent-dataset
sanchit-gandhi's avatar
sanchit-gandhi committed
30
31
32
33
34
  eval_dataset_config_name:
    value: default
  eval_split_name:
    value: test
  eval_label_column_name:
sanchit-gandhi's avatar
sanchit-gandhi committed
35
    value: labels
sanchit-gandhi's avatar
sanchit-gandhi committed
36
37
38
39
40
41
42
43
44
45
46
  output_dir:
    value: ./
  remove_unused_columns:
    value: false
  learning_rate:
    value: 1e-4
  lr_scheduler_type:
    value: constant_with_warmup
  max_length_seconds:
    value: 20
  min_length_seconds:
sanchit-gandhi's avatar
sanchit-gandhi committed
47
    value: 5
sanchit-gandhi's avatar
sanchit-gandhi committed
48
49
50
51
52
53
54
55
56
57
58
  attention_mask:
    value: true
  warmup_steps:
    value: 50
  max_steps:
    value: 1000
  per_device_train_batch_size:
    value: 32
  per_device_eval_batch_size:
    value: 32
  preprocessing_num_workers:
sanchit-gandhi's avatar
sanchit-gandhi committed
59
    value: 4
sanchit-gandhi's avatar
sanchit-gandhi committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
  dataloader_num_workers:
    value: 4
  logging_strategy:
    value: steps
  logging_steps:
    value: 10
  evaluation_strategy:
    value: steps
  eval_steps:
    value: 1000
  save_strategy:
    value: steps
  save_steps:
    value: 1000
  freeze_base_model:
sanchit-gandhi's avatar
sanchit-gandhi committed
75
76
77
    values:
      - false
      - true
sanchit-gandhi's avatar
sanchit-gandhi committed
78
79
80
  push_to_hub:
    value: false
  filter_threshold:
sanchit-gandhi's avatar
sanchit-gandhi committed
81
    value: 1
sanchit-gandhi's avatar
sanchit-gandhi committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
  feat_proj_dropout:
    values:
      - 0.0
      - 0.1
      - 0.2
  attention_dropout:
    values:
      - 0.0
      - 0.1
      - 0.2
  activation_dropout:
    values:
      - 0.0
      - 0.1
      - 0.2
  hidden_dropout:
    values:
      - 0.0
      - 0.1
      - 0.2
  final_dropout:
    values:
      - 0.0
      - 0.1
      - 0.2
  mask_time_prob:
    values:
      - 0.0
      - 0.1
      - 0.2
  mask_time_length:
    values:
      - 10
      - 15
      - 20
  mask_feature_prob:
    values:
      - 0.0
      - 0.1
      - 0.2
  mask_feature_length:
    values:
      - 10
      - 15
      - 20
program: run_audio_classification.py
project: mms-lid-accent-classification