run_dropout_sweep.yaml 2.25 KB
Newer Older
sanchit-gandhi's avatar
sanchit-gandhi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
command:
  - python3
  - ${program}
  - --fp16
  - --fp16_full_eval
  - --do_train
  - --do_eval
  - --trust_remote_code
  - --overwrite_output_dir
  - --ignore_mismatched_sizes
  - --gradient_checkpointing
  - ${args}
method: random
metric:
  goal: maximize
  name: eval/accuracy
parameters:
  model_name_or_path:
    value: facebook/mms-lid-126
  train_dataset_name:
    value: sanchit-gandhi/vctk+facebook/voxpopuli+sanchit-gandhi/edacc
  train_dataset_config_name:
    value: default+en_accented+default
  train_split_name:
    value: train+test+validation
  train_label_column_name:
    value: accent+accent+accent
  eval_dataset_name:
    value: sanchit-gandhi/edacc
  eval_dataset_config_name:
    value: default
  eval_split_name:
    value: test
  eval_label_column_name:
    value: accent
  output_dir:
    value: ./
  remove_unused_columns:
    value: false
  learning_rate:
    value: 1e-4
  lr_scheduler_type:
    value: constant_with_warmup
  max_length_seconds:
    value: 20
  min_length_seconds:
    value: 8
  attention_mask:
    value: true
  warmup_steps:
    value: 50
  max_steps:
    value: 1000
  per_device_train_batch_size:
    value: 32
  per_device_eval_batch_size:
    value: 32
  preprocessing_num_workers:
    value: 16
  dataloader_num_workers:
    value: 4
  logging_strategy:
    value: steps
  logging_steps:
    value: 10
  evaluation_strategy:
    value: steps
  eval_steps:
    value: 1000
  save_strategy:
    value: steps
  save_steps:
    value: 1000
  freeze_base_model:
    value: false
  push_to_hub:
    value: false
  filter_threshold:
    values:
      - 1
      - 2.5
      - 5
  feat_proj_dropout:
    values:
      - 0.0
      - 0.1
      - 0.2
  attention_dropout:
    values:
      - 0.0
      - 0.1
      - 0.2
  activation_dropout:
    values:
      - 0.0
      - 0.1
      - 0.2
  hidden_dropout:
    values:
      - 0.0
      - 0.1
      - 0.2
  final_dropout:
    values:
      - 0.0
      - 0.1
      - 0.2
  mask_time_prob:
    values:
      - 0.0
      - 0.1
      - 0.2
  mask_time_length:
    values:
      - 10
      - 15
      - 20
  mask_feature_prob:
    values:
      - 0.0
      - 0.1
      - 0.2
  mask_feature_length:
    values:
      - 10
      - 15
      - 20
program: run_audio_classification.py
project: mms-lid-accent-classification