run_stable_speech_training.py 45.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" Train a text-to-speech model using 🤗 Transformers Seq2SeqTrainer"""

import functools
import json
import logging
import os
import re
import sys
import warnings
import math

from tqdm import tqdm
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Union

import datasets
import numpy as np
import torch
35
36
from torch.utils.data import DataLoader

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from datasets import DatasetDict, load_dataset, Dataset, IterableDataset, interleave_datasets, concatenate_datasets

import transformers
from transformers import (
    AutoFeatureExtractor,
    AutoModel,
    AutoProcessor,
    AutoTokenizer,
    HfArgumentParser,
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from transformers.integrations import is_wandb_available
53
54
55
56

from accelerate import Accelerator
from accelerate.utils import set_seed

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

from stable_speech import StableSpeechForConditionalGeneration, StableSpeechConfig




# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")

require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")


logger = logging.getLogger(__name__)


def list_field(default=None, metadata=None):
    return field(default_factory=lambda: default, metadata=metadata)


#### ARGUMENTS

class StableSpeechTrainer(Seq2SeqTrainer):
    def _pad_tensors_to_max_len(self, tensor, max_length):
        if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"):
            # If PAD token is not defined at least EOS token has to be defined
            pad_token_id = (
                self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
            )
        else:
            if self.model.config.pad_token_id is not None:
                pad_token_id = self.model.config.pad_token_id
            else:
                raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors")

        padded_tensor = pad_token_id * torch.ones(
            (tensor.shape[0], max_length, tensor.shape[2]), dtype=tensor.dtype, device=tensor.device
        )
        padded_tensor[:, : tensor.shape[1]] = tensor
        return padded_tensor


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
    # TODO: pretrain from scratch
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    feature_extractor_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained feature extractor name or path if not the same as model_name"}
    )
    description_tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained description tokenizer name or path if not the same as model_name"}
    )
    prompt_tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained prompt tokenizer name or path if not the same as description_tokenizer_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    pad_token_id: int = field(
        default=None,
        metadata={"help": "If specified, change the model pad token id."},
    )
    decoder_start_token_id: int = field(
        default=None,
        metadata={"help": "If specified, change the model decoder start token id."},
    )
    freeze_text_encoder: bool = field(
        default=False,
        metadata={"help": "Whether to freeze the text encoder."},
    )


@dataclass
class DataSeq2SeqTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    train_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
    )
    train_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset configs by a '+' symbol."
        },
    )
    train_split_name: str = field(
        default="train",
        metadata={
            "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
        },
    )
    train_dataset_samples: str = field(
        default=None,
        metadata={
            "help": "Number of samples in the training data. Load and combine "
            "multiple datasets by separating dataset samples by a '+' symbol."
        },
    )
    train_metadata_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the metadata training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
    )
    eval_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
        },
    )
    eval_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
        },
    )
    eval_split_name: str = field(
        default="test",
        metadata={
            "help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
        },
    )
    eval_metadata_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the metadata training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
    )
    target_audio_column_name: str = field( # TODO
        default="audio",
        metadata={"help": "The name of the dataset column containing the target audio data. Defaults to 'audio'"},
    )
    description_column_name: str = field( #TODO
        default=None,
        metadata={"help": "The name of the dataset column containing the text data. Defaults to 'None'."},
    )
    prompt_column_name: str = field( #TODO
        default=None,
        metadata={"help": "The name of the dataset column containing the text data. Defaults to 'None'."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of validation examples to this "
                "value if set."
            )
        },
    )
    max_duration_in_seconds: float = field(
        default=35.0,
        metadata={
            "help": (
                "Filter audio files that are longer than `max_duration_in_seconds` seconds to"
                " 'max_duration_in_seconds`"
            )
        },
    )
    min_duration_in_seconds: float = field(
        default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
    )
    preprocessing_only: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether to only do data preprocessing and skip training. This is especially useful when data"
                " preprocessing errors out in distributed training due to timeout. In this case, one should run the"
                " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
                " can consequently be loaded in distributed training"
            )
        },
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
        },
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
                "execute code present on the Hub on your local machine."
            )
        },
    )
    add_audio_samples_to_wandb: bool = field(
        default=False,
        metadata={
            "help": "If set and if `wandb` in args.report_to, will add generated audio samples to wandb logs."
        }
    )
    id_column_name: str = field(
        default=None,
        metadata={
            "help": "id column name."
        }
    )
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    
@dataclass
class DataCollatorEncodecWithPadding:
    """
    Data collator that will dynamically pad the inputs received to the longest sequence in the batch.
    """

    feature_extractor: AutoFeatureExtractor
    feature_extractor_input_name: Optional[str] = "input_values"

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        audios = [torch.tensor(feature["labels"]).squeeze() for feature in features]
        len_audio = [len(audio) for audio in audios]
        max_audio = max(len_audio)
        
        input_features = {self.feature_extractor_input_name: audios}
        batch = self.feature_extractor.pad(input_features, return_tensors="pt", padding="longest", return_attention_mask=True)
        batch[self.feature_extractor_input_name] = batch[self.feature_extractor_input_name].unsqueeze(1) # add mono-channel 
        batch["padding_mask"] = batch.pop("attention_mask")   
        batch["len_audio"] = torch.tensor(len_audio).unsqueeze(1)
        return batch
337
338
339

    
@dataclass
Yoach Lacombe's avatar
Yoach Lacombe committed
340
class DataCollatorStableSpeechWithPadding:
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    """
    Data collator that will dynamically pad the inputs received.
    Args:
        prompt_tokenizer (:class:`~transformers.AutoTokenizer`)
            The prompt_tokenizer used for proccessing the data.
        description_tokenizer (:class:`~transformers.AutoTokenizer`)
            The description_tokenizer used for proccessing the data.
        audio_feature_extractor (:class:`~transformers.AutoFeatureExtractor`)
            The audio_feature_extractor used for proccessing the data.
        padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
            among:
            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
              sequence if provided).
            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
              maximum acceptable input length for the model if that argument is not provided.
            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
              different lengths).
        pad_to_multiple_of (:obj:`int`, `optional`):
            If set will pad the sequence to a multiple of the provided value.
            This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
            7.5 (Volta).
    """

    prompt_tokenizer: AutoTokenizer
    description_tokenizer: AutoTokenizer
    audio_feature_extractor: AutoFeatureExtractor
    feature_extractor_input_name: Optional[str] = "input_values"
    padding: Union[bool, str] = "longest"
    pad_to_multiple_of: Optional[int] = None

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        
        
        labels = [torch.tensor(feature["labels"]).transpose(0,1) for feature in features]
        # (bsz, seq_len, num_codebooks)
        labels = torch.nn.utils.rnn.pad_sequence(labels,batch_first=True,padding_value=-100)
        
        
        input_ids = [{"input_ids": feature["input_ids"]} for feature in features]
        input_ids = self.description_tokenizer.pad(input_ids, return_tensors="pt", padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of)

Yoach Lacombe's avatar
Yoach Lacombe committed
385
386
        batch= {"labels":labels, **input_ids}

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
        prompt_input_ids = [{"input_ids": feature["prompt_input_ids"]} for feature in features]
        prompt_input_ids = self.prompt_tokenizer.pad(prompt_input_ids, return_tensors="pt", padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of)
        
        batch["prompt_input_ids"] = prompt_input_ids["input_ids"]
        if "attention_mask" in prompt_input_ids:
            batch["prompt_attention_mask"] = prompt_input_ids["attention_mask"]
        
        if self.feature_extractor_input_name in features[0]:
            # TODO: verify that it works
            input_values = [{self.feature_extractor_input_name: feature[self.feature_extractor_input_name]} for feature in features]
            input_values = self.feature_extractor.pad(input_values, return_tensors="pt")
            
            batch[self.feature_extractor_input_name: input_values]
        
        return batch
    

def convert_dataset_str_to_list(
    dataset_names,
    dataset_config_names,
    metadata_dataset_names=None,
    splits=None,
    dataset_samples=None,
    default_split="train",
):
    if isinstance(dataset_names, str):
        dataset_names = dataset_names.split("+")
        dataset_config_names = dataset_config_names.split("+")
        splits = splits.split("+") if splits is not None else None
        dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None
        metadata_dataset_names = metadata_dataset_names.split("+") if metadata_dataset_names is not None else None

    # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
    if len(dataset_names) != len(dataset_config_names):
        raise ValueError(
            f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(dataset_config_names)} configs."
        )

    if splits is not None and len(splits) != len(dataset_names):
        raise ValueError(
            f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
        )

    if metadata_dataset_names is not None and len(metadata_dataset_names) != len(dataset_names):
        raise ValueError(
            f"Ensure one metadata dataset is passed for each dataset, got {len(dataset_names)} datasets and {len(metadata_dataset_names)} metadata datasets."
        )

    if dataset_samples is not None:
        if len(dataset_samples) != len(dataset_names):
            raise ValueError(
                f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
                f"{len(dataset_samples)} samples."
            )
        dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
    else:
        dataset_samples = [None] * len(dataset_names)

    splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]

    dataset_names_dict = []
    for i, ds_name in enumerate(dataset_names):
        dataset_names_dict.append(
            {
                "name": ds_name,
                "config": dataset_config_names[i],
                "split": splits[i],
                "metadata_dataset_name": metadata_dataset_names[i],
                "samples": dataset_samples[i],
            }
        )
    return dataset_names_dict


def load_multiple_datasets(
463
    accelerator: Accelerator,
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    dataset_names: Union[List, str],
    dataset_config_names: Union[List, str],
    metadata_dataset_names: Optional[str]=None,
    splits: Optional[Union[List, str]] = None,
    label_column_names: Optional[List] = None,
    stopping_strategy: Optional[str] = "first_exhausted",
    dataset_samples: Optional[Union[List, np.array]] = None,
    streaming: Optional[bool] = False,
    seed: Optional[int] = None,
    id_column_name: Optional[str] = None,
    columns_to_keep: Optional[set[str]] = None,
    **kwargs,
) -> Union[Dataset, IterableDataset]:
    dataset_names_dict = convert_dataset_str_to_list(
        dataset_names, dataset_config_names, metadata_dataset_names, splits, label_column_names, dataset_samples
    )

    if dataset_samples is not None:
        dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
        probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
    else:
        probabilities = None

    all_datasets = []
    # iterate over the datasets we want to interleave
    for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
490
491
492
        with accelerator.main_process_first():
            dataset = load_dataset(
                dataset_dict["name"],
493
494
495
496
497
                dataset_dict["config"],
                split=dataset_dict["split"],
                streaming=streaming,
                **kwargs,
            )
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
            dataset_features = dataset.features.keys()
            
            metadata_dataset_name = dataset_dict["metadata_dataset_name"]
            if metadata_dataset_name is not None:
                metadata_dataset = load_dataset(
                    metadata_dataset_name,
                    dataset_dict["config"],
                    split=dataset_dict["split"],
                    streaming=streaming,
                    **kwargs,
                )
                        
                if id_column_name is not None and id_column_name not in dataset.column_names:
                    raise ValueError(
                        f"id_column_name={id_column_name} but has not been found in the dataset columns"
                        f"- one of {', '.join(list(dataset.column_names))}."
                        )
                if id_column_name is not None and id_column_name not in metadata_dataset.column_names:
                    raise ValueError(
                        f"id_column_name={id_column_name} but has not been found in the metadata dataset columns"
                        f"- one of {', '.join(list(metadata_dataset.column_names))}."
                        )
                elif id_column_name is not None:
                    metadata_dataset = metadata_dataset.rename_column(id_column_name, f"metadata_{id_column_name}")
522
523
                    
                
524
525
526
                metadata_columns_to_remove = set(metadata_dataset.column_names).intersection(set(dataset.column_names))
                metadata_dataset = metadata_dataset.remove_columns(metadata_columns_to_remove)
                dataset = concatenate_datasets([dataset, metadata_dataset], axis=1)
527
                
528
529
530
531
532
                if id_column_name is not None:
                    if len(dataset.filter(lambda id1, id2: id1!=id2, input_columns=[id_column_name, f"metadata_{id_column_name}"])) != 0:
                        raise ValueError(f"Concatenate didn't work. Some ids don't correspond on dataset {dataset_dict['name']}")
                    
                dataset_features = dataset.features.keys()
Yoach Lacombe's avatar
Yoach Lacombe committed
533

534
535
            if columns_to_keep is not None:
                dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        all_datasets.append(dataset)

    if len(all_datasets) == 1:
        # we have a single dataset so just return it as is
        return all_datasets[0]

    if streaming:
        interleaved_dataset = interleave_datasets(
            all_datasets,
            stopping_strategy=stopping_strategy,
            probabilities=probabilities,
            seed=seed,
        )
    else:
550
551
        with accelerator.main_process_first():
            interleaved_dataset = concatenate_datasets(all_datasets)
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

    return interleaved_dataset

    
    
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataSeq2SeqTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_stable_speech", model_args, data_args)
573
574
    
    accelerator = Accelerator()
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
597
    logger.setLevel(logging.INFO if accelerator.is_main_process else logging.WARN)
598
599
600
601
602
603
604

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
605
    if accelerator.is_main_process:
606
        transformers.utils.logging.set_verbosity_info()
607

608
609
610
611
612
613
614
615
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # 1. First, let's load the dataset
    raw_datasets = DatasetDict()
    num_workers = data_args.preprocessing_num_workers
Yoach Lacombe's avatar
Yoach Lacombe committed
616
    
617
618
619
620
    columns_to_keep = {
        "target_audio_column_name": data_args.target_audio_column_name,
        "prompt_column_name": data_args.prompt_column_name
    }
Yoach Lacombe's avatar
Yoach Lacombe committed
621
    if data_args.description_column_name is not None:
622
        columns_to_keep["description_column_nam"] = data_args.description_column_name
623
        
Yoach Lacombe's avatar
Yoach Lacombe committed
624
    if training_args.do_train:
625
        raw_datasets["train"] = load_multiple_datasets(
626
            accelerator,
627
628
            data_args.train_dataset_name,
            data_args.train_dataset_config_name,
629
            metadata_dataset_names=data_args.train_metadata_dataset_name,
630
631
632
633
634
635
            splits=data_args.train_split_name,
            dataset_samples=data_args.train_dataset_samples,
            seed=training_args.seed,
            cache_dir=model_args.cache_dir,
            num_proc=data_args.preprocessing_num_workers,
            id_column_name=data_args.id_column_name,
636
            columns_to_keep=columns_to_keep.values(),
637
638
639
            # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
        )
        
640
641
642
643
644
645
646
        for key in columns_to_keep:
            if columns_to_keep[key] not in raw_datasets["train"].column_names:
                raise ValueError(
                    f"--{key} '{columns_to_keep[key]}' not found in dataset '{data_args.train_dataset_name}'."
                    f" Make sure to set `--{key}` to the correct audio column - one of"
                    f" {', '.join(raw_datasets['train'].column_names)}."
                )        
647
648
649
650
651
652

        if data_args.max_train_samples is not None:
            raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))

    if training_args.do_eval:
        raw_datasets["eval"] = load_multiple_datasets(
653
            accelerator,
654
            data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
655
656
            data_args.eval_dataset_config_name if data_args.eval_dataset_config_name else data_args.train_dataset_config_name,
            metadata_dataset_names=data_args.eval_metadata_dataset_name,
657
658
659
660
            splits=data_args.eval_split_name,
            cache_dir=model_args.cache_dir,
            num_proc=data_args.preprocessing_num_workers,
            id_column_name=data_args.id_column_name,
661
            columns_to_keep=columns_to_keep.values(),
662
663
664
665
666
667
668
            # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
        )

        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))


669
670
    # 2. Next, let's load the config as we might need it to create
    # load config TODO: add the option to create the config from scratch
671
672
673
674
675
676
677
678
679
680
681
682
683
    config = StableSpeechConfig.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
    )
    
    # update pad token id and decoder_start_token_id
    config.update({
        "pad_token_id": model_args.pad_token_id if model_args.pad_token_id is not None else model.config.pad_token_id,
        "decoder_start_token_id": model_args.decoder_start_token_id if model_args.decoder_start_token_id is not None else model.config.decoder_start_token_id,
    })

684
    # 3. Now we can instantiate the feature extractor, tokenizers and model
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
    # Note for distributed training, the .from_pretrained methods guarantee that only
    # one local process can concurrently download model & vocab.
    
    # load feature extractor
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
    )
    
    # load prompt tokenizer
    prompt_tokenizer = AutoTokenizer.from_pretrained(
        model_args.prompt_tokenizer_name or model_args.description_tokenizer_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
702
        use_fast=model_args.use_fast_tokenizer,
703
    )
704
        
705
706
707
708
709
710
    # load description tokenizer
    description_tokenizer = AutoTokenizer.from_pretrained(
        model_args.description_tokenizer_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
711
        use_fast=model_args.use_fast_tokenizer,
712
713
    )
    
714
715
716
717
718
719
    if model_args.use_fast_tokenizer:
        logger.warning("Disabling fast tokenizer warning: https://github.com/huggingface/transformers/blob/main/src/transformers/tokenization_utils_base.py#L3231-L3235")
        prompt_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
        description_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True

    
720
721
722
723
724
725
726
727
728
729
    # create model + TODO: not from_pretrained probably
    model = StableSpeechForConditionalGeneration.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        config=config,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
    )
    
    
730
    # 4. Now we preprocess the datasets including loading the audio, resampling and normalization
731
732
733
734
735
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`
    
    # derive max & min input length for sample rate & max duration
736
737
738
    sampling_rate = feature_extractor.sampling_rate
    max_target_length = data_args.max_duration_in_seconds * sampling_rate
    min_target_length = data_args.min_duration_in_seconds * sampling_rate
739
740
741
742
743
    target_audio_column_name = data_args.target_audio_column_name
    description_column_name = data_args.description_column_name
    prompt_column_name = data_args.prompt_column_name
    feature_extractor_input_name = feature_extractor.model_input_names[0]
    
744
745
746
747
748
    # resample target audio
    raw_datasets = raw_datasets.cast_column(
        target_audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate)
    )
    
749
750

    # Preprocessing the datasets.
751
    # We need to read the audio files as arrays and tokenize the texts.
752
753
754
755
    def pass_through_processors(batch):
        # load audio
        if description_column_name is not None:
            text = batch[description_column_name]
Yoach Lacombe's avatar
Yoach Lacombe committed
756
            batch["input_ids"] = description_tokenizer(text.strip())["input_ids"]
757
758
759
            
        if prompt_column_name is not None:
            text = batch[prompt_column_name]
Yoach Lacombe's avatar
Yoach Lacombe committed
760
            batch["prompt_input_ids"] = prompt_tokenizer(text.strip())["input_ids"]
761
762
763

        # load audio
        target_sample = batch[target_audio_column_name]
764
        labels = feature_extractor(target_sample["array"], sampling_rate=target_sample["sampling_rate"])
765
766
767
768
769
770
        batch["labels"] = labels["input_values"]
        
        # take length of raw audio waveform
        batch["target_length"] = len(target_sample["array"].squeeze())
        return batch

771
    with accelerator.main_process_first():
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
        vectorized_datasets = raw_datasets.map(
            pass_through_processors,
            remove_columns=next(iter(raw_datasets.values())).column_names,
            num_proc=num_workers,
            desc="preprocess datasets",
        )

        def is_audio_in_length_range(length):
            return length > min_target_length and length < max_target_length

        # filter data that is shorter than min_target_length
        vectorized_datasets = vectorized_datasets.filter(
            is_audio_in_length_range,
            num_proc=num_workers,
            input_columns=["target_length"],
        )
788
789
790
791
792
793
794
795
796
797


    # 5. Now we encode the audio labels with encodec.
    # We use Accelerate to perform distributed inference

    logger.info("*** Encode target audio with encodec ***")
    
    # no need to prepare audio_decoder because used for inference without mixed precision
    # see: https://huggingface.co/docs/accelerate/main/en/package_reference/accelerator#accelerate.Accelerator.prepare
    # TODO: load another model
798
799
    audio_decoder = model.audio_encoder

800
801
    encoder_data_collator = DataCollatorEncodecWithPadding(feature_extractor, feature_extractor_input_name)

802
    def apply_audio_decoder(batch):
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
        len_audio = batch.pop("len_audio")
        audio_decoder.to(batch["input_values"].device).eval()
        labels = audio_decoder.encode(**batch)["audio_codes"]
        output = {}
        output["len_audio"] = len_audio
        # (1, bsz, codebooks, seq_len) -> (bsz, seq_len, codebooks)
        output["labels"] = labels.squeeze(0).transpose(1,2)
        output["ratio"] = torch.ones_like(len_audio) * labels.shape[-1] / len_audio.max() 
        return output

    for split in vectorized_datasets:
        data_loader = DataLoader(
            vectorized_datasets[split],
            batch_size=training_args.per_device_eval_batch_size,
            collate_fn=encoder_data_collator,
            num_workers=training_args.dataloader_num_workers,
            pin_memory=True,
820
        )
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
        data_loader = accelerator.prepare(data_loader)        
        
        all_generated_labels = []
        all_ratios = []
        all_lens = []
        for batch in tqdm(data_loader, disable=not accelerator.is_local_main_process):
            generate_labels = apply_audio_decoder(batch)
            generate_labels = accelerator.pad_across_processes(generate_labels, dim=1, pad_index=0)
            generate_labels = accelerator.gather_for_metrics(generate_labels)
            
            all_generated_labels.extend(generate_labels["labels"].cpu())
            all_ratios.extend(generate_labels["ratio"].cpu())
            all_lens.extend(generate_labels["len_audio"].cpu())
            
        def postprocess_dataset(sample, idx):
            # (1, seq_len, codebooks, bsz)
            labels = all_generated_labels[idx].transpose(0,1).unsqueeze(0)
            labels, delay_pattern_mask = model.decoder.build_delay_pattern_mask(labels, 
                                                    model.generation_config.decoder_start_token_id, 
                                                    model.generation_config.max_length + model.decoder.config.num_codebooks)
            
            labels = model.decoder.apply_delay_pattern_mask(labels, delay_pattern_mask)
            len_ = int(all_ratios[idx] * all_lens[idx])

            # the first timestamp is associated to a row full of BOS, let's get rid of it
            sample["labels"] = labels[:, 1:len_]
            return sample

        # TODO: done multiple times, how to deal with it.
        with accelerator.main_process_first():
            vectorized_datasets[split] = vectorized_datasets[split].map(
                postprocess_dataset,
                num_proc=num_workers,
                desc="Postprocessing labeling",
                with_indices=True,
            )

            
    accelerator.free_memory()
    del generate_labels


863
864
865
866
867
868
869
870
871
872
873
874
875
876
    
    if data_args.add_audio_samples_to_wandb and "wandb" in training_args.report_to:
        if is_wandb_available():
            from transformers.integrations import WandbCallback
        else:
            raise ValueError("`args.add_audio_samples_to_wandb=True` but wandb is not installed. See https://docs.wandb.ai/quickstart to install.")
        

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
877
        # TODO: save to disk in this step instead of something else ??
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
        logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
        return
    
    # 6. Next, we can prepare the training.
    # Let's use word CLAP similary as our evaluation metric,
    # instantiate a data collator and the trainer

    # Define evaluation metrics during training, *i.e.* CLAP similarity
    # TODO: allow using another CLAP
    clap = AutoModel.from_pretrained("laion/larger_clap_music_and_speech")
    clap_processor = AutoProcessor.from_pretrained("laion/larger_clap_music_and_speech")
    
    # TODO add wer with lightweight asr model
    
    
    def clap_similarity(texts, audios):
        clap_inputs = clap_processor(text=texts, audios=audios.squeeze(1), padding=True, return_tensors="pt")
        text_features = clap.get_text_features(clap_inputs["input_ids"], attention_mask=clap_inputs.get("attention_mask", None))
        audio_features = clap.get_audio_features(clap_inputs["input_features"])
        
        cosine_sim = torch.nn.functional.cosine_similarity(audio_features, text_features, dim=1, eps=1e-8)
        
        return cosine_sim.mean()
    
    eval_metrics = {"clap": clap_similarity}

    def compute_metrics(pred):
        input_ids = pred.inputs
        input_ids[input_ids==-100] = description_tokenizer.pad_token_id
        texts = description_tokenizer.batch_decode(input_ids, skip_special_tokens=True)
        audios = pred.predictions
        
        results = {key: metric(texts, audios) for (key, metric) in eval_metrics.items()}

        return results

    # Now save everything to be able to create a single processor later
    # make sure all processes wait until data is saved
916
    with accelerator.main_process_first():
917
        # only the main process saves them
918
        if accelerator.is_main_process:
919
920
921
922
923
924
925
926
927
928
929
            # save feature extractor, tokenizer and config
            if model_args.prompt_tokenizer_name is None and model_args.description_tokenizer_name or (model_args.prompt_tokenizer_name==model_args.description_tokenizer_name):
                prompt_tokenizer.save_pretrained(training_args.output_dir)
            else:
                logger.warning("Prompt tokenizer ('{model_args.prompt_tokenizer_name}') and description tokenizer ('{model_args.description_tokenizer_name}') are not the same. Saving only the prompt tokenizer.")
                prompt_tokenizer.save_pretrained(training_args.output_dir)
            
            feature_extractor.save_pretrained(training_args.output_dir)
            config.save_pretrained(training_args.output_dir)

    # Instantiate custom data collator
Yoach Lacombe's avatar
Yoach Lacombe committed
930
931
    data_collator = DataCollatorStableSpeechWithPadding(
        audio_feature_extractor=feature_extractor, feature_extractor_input_name=feature_extractor_input_name, prompt_tokenizer=prompt_tokenizer, description_tokenizer=description_tokenizer
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
    )
    
    # Freeze Encoders
    model.freeze_encoders(model_args.freeze_text_encoder)
        

    # Initialize StableSpeechTrainer
    trainer = StableSpeechTrainer(
        model=model,
        data_collator=data_collator,
        args=training_args,
        compute_metrics=compute_metrics,
        train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
        eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
        tokenizer=feature_extractor,
    )
    
    if data_args.add_audio_samples_to_wandb and "wandb" in training_args.report_to:
        def decode_predictions(predictions):
            audios = predictions.predictions
            return {"audio": np.array(audios.squeeze(1))}


        class WandbPredictionProgressCallback(WandbCallback):
            """Custom WandbCallback to log model predictions during training.
            """

            def __init__(self, trainer, val_dataset,
                        num_samples=8):
                """Initializes the WandbPredictionProgressCallback instance.

                Args:
                    trainer (Seq2SeqTrainer): The Hugging Face Seq2SeqTrainer instance.
                    val_dataset (Dataset): The validation dataset.
                    num_samples (int, optional): Number of samples to select from 
                    the validation dataset for generating predictions.
                    Defaults to 8.
                """
                super().__init__()
                self.trainer = trainer
                self.sample_dataset = val_dataset.select(range(num_samples))

            def on_train_end(self, args, state, control, **kwargs):
                super().on_train_end(args, state, control, **kwargs)


                predictions = self.trainer.predict(self.sample_dataset)
                # decode predictions and labels
                predictions = decode_predictions(predictions)
                
                input_ids = self.sample_dataset["input_ids"]
                texts = self.description_tokenizer.batch_decode(input_ids, skip_special_tokens=True)
                audios = predictions["audio"]

                # log the table to wandb
987
                self._wandb.log({"sample_songs": [self._wandb.Audio(audio, caption=text, sample_rate=sampling_rate) for (audio, text) in zip(audios, texts)]})
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007



        # Instantiate the WandbPredictionProgressCallback
        progress_callback = WandbPredictionProgressCallback(
            trainer=trainer,
            val_dataset=vectorized_datasets["eval"],
            num_samples=8, # TODO: add to args
        )

        # Add the callback to the trainer
        trainer.add_callback(progress_callback)

    # 8. Finally, we can start training

    # Training
    if training_args.do_train:
        # use last checkpoint if exist
        if last_checkpoint is not None:
            checkpoint = last_checkpoint
Yoach Lacombe's avatar
Yoach Lacombe committed
1008
1009
1010
        # TODO: it's loading trainer from model_name_or_path doesn't work if saving config
        # elif os.path.isdir(model_args.model_name_or_path):
        #     checkpoint = model_args.model_name_or_path
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
        else:
            checkpoint = None

        train_result = trainer.train(resume_from_checkpoint=checkpoint, ignore_keys_for_eval=["past_key_values", "attentions"])
        trainer.save_model()

        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples
            if data_args.max_train_samples is not None
            else len(vectorized_datasets["train"])
        )
        metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate()
        max_eval_samples = (
            data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
        )
        metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    config_name = data_args.train_dataset_config_name if data_args.train_dataset_config_name is not None else "na"
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "text-to-speech",
        "tags": ["text-to-speech", data_args.train_dataset_name],
        "dataset_args": (
            f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
            f" {data_args.eval_split_name}"
        ),
        "dataset": f"{data_args.train_dataset_name.upper()} - {config_name.upper()}",
    }

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)

    return results


if __name__ == "__main__":
    main()