#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Train a text-to-speech model using 🤗 Transformers Seq2SeqTrainer""" import functools import json import logging import os import re import sys import warnings import math from tqdm import tqdm from dataclasses import dataclass, field from typing import Dict, List, Optional, Union import datasets import numpy as np import torch from torch.utils.data import DataLoader from datasets import DatasetDict, load_dataset, Dataset, IterableDataset, interleave_datasets, concatenate_datasets import transformers from transformers import ( AutoFeatureExtractor, AutoModel, AutoProcessor, AutoTokenizer, HfArgumentParser, Seq2SeqTrainer, Seq2SeqTrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version from transformers.integrations import is_wandb_available from accelerate import Accelerator from accelerate.utils import set_seed from stable_speech import StableSpeechForConditionalGeneration, StableSpeechConfig # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.38.0.dev0") require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt") logger = logging.getLogger(__name__) def list_field(default=None, metadata=None): return field(default_factory=lambda: default, metadata=metadata) #### ARGUMENTS class StableSpeechTrainer(Seq2SeqTrainer): def _pad_tensors_to_max_len(self, tensor, max_length): if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"): # If PAD token is not defined at least EOS token has to be defined pad_token_id = ( self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id ) else: if self.model.config.pad_token_id is not None: pad_token_id = self.model.config.pad_token_id else: raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors") padded_tensor = pad_token_id * torch.ones( (tensor.shape[0], max_length, tensor.shape[2]), dtype=tensor.dtype, device=tensor.device ) padded_tensor[:, : tensor.shape[1]] = tensor return padded_tensor @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ # TODO: pretrain from scratch model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) feature_extractor_name: Optional[str] = field( default=None, metadata={"help": "Pretrained feature extractor name or path if not the same as model_name"} ) description_tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained description tokenizer name or path if not the same as model_name"} ) prompt_tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained prompt tokenizer name or path if not the same as description_tokenizer_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) pad_token_id: int = field( default=None, metadata={"help": "If specified, change the model pad token id."}, ) decoder_start_token_id: int = field( default=None, metadata={"help": "If specified, change the model decoder start token id."}, ) freeze_text_encoder: bool = field( default=False, metadata={"help": "Whether to freeze the text encoder."}, ) @dataclass class DataSeq2SeqTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ train_dataset_name: str = field( default=None, metadata={ "help": "The name of the training dataset to use (via the datasets library). Load and combine " "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine " " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`." }, ) train_dataset_config_name: Optional[str] = field( default=None, metadata={ "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine " "multiple datasets by separating dataset configs by a '+' symbol." }, ) train_split_name: str = field( default="train", metadata={ "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'") }, ) train_dataset_samples: str = field( default=None, metadata={ "help": "Number of samples in the training data. Load and combine " "multiple datasets by separating dataset samples by a '+' symbol." }, ) train_metadata_dataset_name: str = field( default=None, metadata={ "help": "The name of the metadata training dataset to use (via the datasets library). Load and combine " "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine " " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`." }, ) eval_dataset_name: str = field( default=None, metadata={ "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified." }, ) eval_dataset_config_name: Optional[str] = field( default=None, metadata={ "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified" }, ) eval_split_name: str = field( default="test", metadata={ "help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'" }, ) eval_metadata_dataset_name: str = field( default=None, metadata={ "help": "The name of the metadata training dataset to use (via the datasets library). Load and combine " "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine " " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`." }, ) target_audio_column_name: str = field( # TODO default="audio", metadata={"help": "The name of the dataset column containing the target audio data. Defaults to 'audio'"}, ) description_column_name: str = field( #TODO default=None, metadata={"help": "The name of the dataset column containing the text data. Defaults to 'None'."}, ) prompt_column_name: str = field( #TODO default=None, metadata={"help": "The name of the dataset column containing the text data. Defaults to 'None'."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) max_duration_in_seconds: float = field( default=35.0, metadata={ "help": ( "Filter audio files that are longer than `max_duration_in_seconds` seconds to" " 'max_duration_in_seconds`" ) }, ) min_duration_in_seconds: float = field( default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} ) preprocessing_only: bool = field( default=False, metadata={ "help": ( "Whether to only do data preprocessing and skip training. This is especially useful when data" " preprocessing errors out in distributed training due to timeout. In this case, one should run the" " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets" " can consequently be loaded in distributed training" ) }, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) add_audio_samples_to_wandb: bool = field( default=False, metadata={ "help": "If set and if `wandb` in args.report_to, will add generated audio samples to wandb logs." } ) id_column_name: str = field( default=None, metadata={ "help": "id column name." } ) @dataclass class DataCollatorEncodecWithPadding: """ Data collator that will dynamically pad the inputs received to the longest sequence in the batch. """ feature_extractor: AutoFeatureExtractor feature_extractor_input_name: Optional[str] = "input_values" def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lengths and need # different padding methods audios = [torch.tensor(feature["labels"]).squeeze() for feature in features] len_audio = [len(audio) for audio in audios] max_audio = max(len_audio) input_features = {self.feature_extractor_input_name: audios} batch = self.feature_extractor.pad(input_features, return_tensors="pt", padding="longest", return_attention_mask=True) batch[self.feature_extractor_input_name] = batch[self.feature_extractor_input_name].unsqueeze(1) # add mono-channel batch["padding_mask"] = batch.pop("attention_mask") batch["len_audio"] = torch.tensor(len_audio).unsqueeze(1) return batch @dataclass class DataCollatorStableSpeechWithPadding: """ Data collator that will dynamically pad the inputs received. Args: prompt_tokenizer (:class:`~transformers.AutoTokenizer`) The prompt_tokenizer used for proccessing the data. description_tokenizer (:class:`~transformers.AutoTokenizer`) The description_tokenizer used for proccessing the data. audio_feature_extractor (:class:`~transformers.AutoFeatureExtractor`) The audio_feature_extractor used for proccessing the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). """ prompt_tokenizer: AutoTokenizer description_tokenizer: AutoTokenizer audio_feature_extractor: AutoFeatureExtractor feature_extractor_input_name: Optional[str] = "input_values" padding: Union[bool, str] = "longest" pad_to_multiple_of: Optional[int] = None def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lengths and need # different padding methods labels = [torch.tensor(feature["labels"]).transpose(0,1) for feature in features] # (bsz, seq_len, num_codebooks) labels = torch.nn.utils.rnn.pad_sequence(labels,batch_first=True,padding_value=-100) input_ids = [{"input_ids": feature["input_ids"]} for feature in features] input_ids = self.description_tokenizer.pad(input_ids, return_tensors="pt", padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of) batch= {"labels":labels, **input_ids} prompt_input_ids = [{"input_ids": feature["prompt_input_ids"]} for feature in features] prompt_input_ids = self.prompt_tokenizer.pad(prompt_input_ids, return_tensors="pt", padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of) batch["prompt_input_ids"] = prompt_input_ids["input_ids"] if "attention_mask" in prompt_input_ids: batch["prompt_attention_mask"] = prompt_input_ids["attention_mask"] if self.feature_extractor_input_name in features[0]: # TODO: verify that it works input_values = [{self.feature_extractor_input_name: feature[self.feature_extractor_input_name]} for feature in features] input_values = self.feature_extractor.pad(input_values, return_tensors="pt") batch[self.feature_extractor_input_name: input_values] return batch def convert_dataset_str_to_list( dataset_names, dataset_config_names, metadata_dataset_names=None, splits=None, dataset_samples=None, default_split="train", ): if isinstance(dataset_names, str): dataset_names = dataset_names.split("+") dataset_config_names = dataset_config_names.split("+") splits = splits.split("+") if splits is not None else None dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None metadata_dataset_names = metadata_dataset_names.split("+") if metadata_dataset_names is not None else None # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs if len(dataset_names) != len(dataset_config_names): raise ValueError( f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" f" {len(dataset_config_names)} configs." ) if splits is not None and len(splits) != len(dataset_names): raise ValueError( f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." ) if metadata_dataset_names is not None and len(metadata_dataset_names) != len(dataset_names): raise ValueError( f"Ensure one metadata dataset is passed for each dataset, got {len(dataset_names)} datasets and {len(metadata_dataset_names)} metadata datasets." ) if dataset_samples is not None: if len(dataset_samples) != len(dataset_names): raise ValueError( f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and " f"{len(dataset_samples)} samples." ) dataset_samples = [float(ds_sample) for ds_sample in dataset_samples] else: dataset_samples = [None] * len(dataset_names) splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] dataset_names_dict = [] for i, ds_name in enumerate(dataset_names): dataset_names_dict.append( { "name": ds_name, "config": dataset_config_names[i], "split": splits[i], "metadata_dataset_name": metadata_dataset_names[i], "samples": dataset_samples[i], } ) return dataset_names_dict def load_multiple_datasets( accelerator: Accelerator, dataset_names: Union[List, str], dataset_config_names: Union[List, str], metadata_dataset_names: Optional[str]=None, splits: Optional[Union[List, str]] = None, label_column_names: Optional[List] = None, stopping_strategy: Optional[str] = "first_exhausted", dataset_samples: Optional[Union[List, np.array]] = None, streaming: Optional[bool] = False, seed: Optional[int] = None, id_column_name: Optional[str] = None, columns_to_keep: Optional[set[str]] = None, **kwargs, ) -> Union[Dataset, IterableDataset]: dataset_names_dict = convert_dataset_str_to_list( dataset_names, dataset_config_names, metadata_dataset_names, splits, label_column_names, dataset_samples ) if dataset_samples is not None: dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict] probabilities = np.array(dataset_samples) / np.sum(dataset_samples) else: probabilities = None all_datasets = [] # iterate over the datasets we want to interleave for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."): with accelerator.main_process_first(): dataset = load_dataset( dataset_dict["name"], dataset_dict["config"], split=dataset_dict["split"], streaming=streaming, **kwargs, ) dataset_features = dataset.features.keys() metadata_dataset_name = dataset_dict["metadata_dataset_name"] if metadata_dataset_name is not None: metadata_dataset = load_dataset( metadata_dataset_name, dataset_dict["config"], split=dataset_dict["split"], streaming=streaming, **kwargs, ) if id_column_name is not None and id_column_name not in dataset.column_names: raise ValueError( f"id_column_name={id_column_name} but has not been found in the dataset columns" f"- one of {', '.join(list(dataset.column_names))}." ) if id_column_name is not None and id_column_name not in metadata_dataset.column_names: raise ValueError( f"id_column_name={id_column_name} but has not been found in the metadata dataset columns" f"- one of {', '.join(list(metadata_dataset.column_names))}." ) elif id_column_name is not None: metadata_dataset = metadata_dataset.rename_column(id_column_name, f"metadata_{id_column_name}") metadata_columns_to_remove = set(metadata_dataset.column_names).intersection(set(dataset.column_names)) metadata_dataset = metadata_dataset.remove_columns(metadata_columns_to_remove) dataset = concatenate_datasets([dataset, metadata_dataset], axis=1) if id_column_name is not None: if len(dataset.filter(lambda id1, id2: id1!=id2, input_columns=[id_column_name, f"metadata_{id_column_name}"])) != 0: raise ValueError(f"Concatenate didn't work. Some ids don't correspond on dataset {dataset_dict['name']}") dataset_features = dataset.features.keys() if columns_to_keep is not None: dataset = dataset.remove_columns(set(dataset_features - columns_to_keep)) all_datasets.append(dataset) if len(all_datasets) == 1: # we have a single dataset so just return it as is return all_datasets[0] if streaming: interleaved_dataset = interleave_datasets( all_datasets, stopping_strategy=stopping_strategy, probabilities=probabilities, seed=seed, ) else: with accelerator.main_process_first(): interleaved_dataset = concatenate_datasets(all_datasets) return interleaved_dataset def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataSeq2SeqTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_stable_speech", model_args, data_args) accelerator = Accelerator() # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if accelerator.is_main_process else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if accelerator.is_main_process: transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # 1. First, let's load the dataset raw_datasets = DatasetDict() num_workers = data_args.preprocessing_num_workers columns_to_keep = { "target_audio_column_name": data_args.target_audio_column_name, "prompt_column_name": data_args.prompt_column_name } if data_args.description_column_name is not None: columns_to_keep["description_column_nam"] = data_args.description_column_name if training_args.do_train: raw_datasets["train"] = load_multiple_datasets( accelerator, data_args.train_dataset_name, data_args.train_dataset_config_name, metadata_dataset_names=data_args.train_metadata_dataset_name, splits=data_args.train_split_name, dataset_samples=data_args.train_dataset_samples, seed=training_args.seed, cache_dir=model_args.cache_dir, num_proc=data_args.preprocessing_num_workers, id_column_name=data_args.id_column_name, columns_to_keep=columns_to_keep.values(), # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode ) for key in columns_to_keep: if columns_to_keep[key] not in raw_datasets["train"].column_names: raise ValueError( f"--{key} '{columns_to_keep[key]}' not found in dataset '{data_args.train_dataset_name}'." f" Make sure to set `--{key}` to the correct audio column - one of" f" {', '.join(raw_datasets['train'].column_names)}." ) if data_args.max_train_samples is not None: raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) if training_args.do_eval: raw_datasets["eval"] = load_multiple_datasets( accelerator, data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name, data_args.eval_dataset_config_name if data_args.eval_dataset_config_name else data_args.train_dataset_config_name, metadata_dataset_names=data_args.eval_metadata_dataset_name, splits=data_args.eval_split_name, cache_dir=model_args.cache_dir, num_proc=data_args.preprocessing_num_workers, id_column_name=data_args.id_column_name, columns_to_keep=columns_to_keep.values(), # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode ) if data_args.max_eval_samples is not None: raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) # 2. Next, let's load the config as we might need it to create # load config TODO: add the option to create the config from scratch config = StableSpeechConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=data_args.token, trust_remote_code=data_args.trust_remote_code, ) # update pad token id and decoder_start_token_id config.update({ "pad_token_id": model_args.pad_token_id if model_args.pad_token_id is not None else model.config.pad_token_id, "decoder_start_token_id": model_args.decoder_start_token_id if model_args.decoder_start_token_id is not None else model.config.decoder_start_token_id, }) # 3. Now we can instantiate the feature extractor, tokenizers and model # Note for distributed training, the .from_pretrained methods guarantee that only # one local process can concurrently download model & vocab. # load feature extractor feature_extractor = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=data_args.token, trust_remote_code=data_args.trust_remote_code, ) # load prompt tokenizer prompt_tokenizer = AutoTokenizer.from_pretrained( model_args.prompt_tokenizer_name or model_args.description_tokenizer_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=data_args.token, trust_remote_code=data_args.trust_remote_code, use_fast=model_args.use_fast_tokenizer, ) # load description tokenizer description_tokenizer = AutoTokenizer.from_pretrained( model_args.description_tokenizer_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=data_args.token, trust_remote_code=data_args.trust_remote_code, use_fast=model_args.use_fast_tokenizer, ) if model_args.use_fast_tokenizer: logger.warning("Disabling fast tokenizer warning: https://github.com/huggingface/transformers/blob/main/src/transformers/tokenization_utils_base.py#L3231-L3235") prompt_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True description_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True # create model + TODO: not from_pretrained probably model = StableSpeechForConditionalGeneration.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, config=config, token=data_args.token, trust_remote_code=data_args.trust_remote_code, ) # 4. Now we preprocess the datasets including loading the audio, resampling and normalization # Thankfully, `datasets` takes care of automatically loading and resampling the audio, # so that we just need to set the correct target sampling rate and normalize the input # via the `feature_extractor` # derive max & min input length for sample rate & max duration sampling_rate = feature_extractor.sampling_rate max_target_length = data_args.max_duration_in_seconds * sampling_rate min_target_length = data_args.min_duration_in_seconds * sampling_rate target_audio_column_name = data_args.target_audio_column_name description_column_name = data_args.description_column_name prompt_column_name = data_args.prompt_column_name feature_extractor_input_name = feature_extractor.model_input_names[0] # resample target audio raw_datasets = raw_datasets.cast_column( target_audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate) ) # Preprocessing the datasets. # We need to read the audio files as arrays and tokenize the texts. def pass_through_processors(batch): # load audio if description_column_name is not None: text = batch[description_column_name] batch["input_ids"] = description_tokenizer(text.strip())["input_ids"] if prompt_column_name is not None: text = batch[prompt_column_name] batch["prompt_input_ids"] = prompt_tokenizer(text.strip())["input_ids"] # load audio target_sample = batch[target_audio_column_name] labels = feature_extractor(target_sample["array"], sampling_rate=target_sample["sampling_rate"]) batch["labels"] = labels["input_values"] # take length of raw audio waveform batch["target_length"] = len(target_sample["array"].squeeze()) return batch with accelerator.main_process_first(): vectorized_datasets = raw_datasets.map( pass_through_processors, remove_columns=next(iter(raw_datasets.values())).column_names, num_proc=num_workers, desc="preprocess datasets", ) def is_audio_in_length_range(length): return length > min_target_length and length < max_target_length # filter data that is shorter than min_target_length vectorized_datasets = vectorized_datasets.filter( is_audio_in_length_range, num_proc=num_workers, input_columns=["target_length"], ) # 5. Now we encode the audio labels with encodec. # We use Accelerate to perform distributed inference logger.info("*** Encode target audio with encodec ***") # no need to prepare audio_decoder because used for inference without mixed precision # see: https://huggingface.co/docs/accelerate/main/en/package_reference/accelerator#accelerate.Accelerator.prepare # TODO: load another model audio_decoder = model.audio_encoder encoder_data_collator = DataCollatorEncodecWithPadding(feature_extractor, feature_extractor_input_name) def apply_audio_decoder(batch): len_audio = batch.pop("len_audio") audio_decoder.to(batch["input_values"].device).eval() labels = audio_decoder.encode(**batch)["audio_codes"] output = {} output["len_audio"] = len_audio # (1, bsz, codebooks, seq_len) -> (bsz, seq_len, codebooks) output["labels"] = labels.squeeze(0).transpose(1,2) output["ratio"] = torch.ones_like(len_audio) * labels.shape[-1] / len_audio.max() return output for split in vectorized_datasets: data_loader = DataLoader( vectorized_datasets[split], batch_size=training_args.per_device_eval_batch_size, collate_fn=encoder_data_collator, num_workers=training_args.dataloader_num_workers, pin_memory=True, ) data_loader = accelerator.prepare(data_loader) all_generated_labels = [] all_ratios = [] all_lens = [] for batch in tqdm(data_loader, disable=not accelerator.is_local_main_process): generate_labels = apply_audio_decoder(batch) generate_labels = accelerator.pad_across_processes(generate_labels, dim=1, pad_index=0) generate_labels = accelerator.gather_for_metrics(generate_labels) all_generated_labels.extend(generate_labels["labels"].cpu()) all_ratios.extend(generate_labels["ratio"].cpu()) all_lens.extend(generate_labels["len_audio"].cpu()) def postprocess_dataset(sample, idx): # (1, seq_len, codebooks, bsz) labels = all_generated_labels[idx].transpose(0,1).unsqueeze(0) labels, delay_pattern_mask = model.decoder.build_delay_pattern_mask(labels, model.generation_config.decoder_start_token_id, model.generation_config.max_length + model.decoder.config.num_codebooks) labels = model.decoder.apply_delay_pattern_mask(labels, delay_pattern_mask) len_ = int(all_ratios[idx] * all_lens[idx]) # the first timestamp is associated to a row full of BOS, let's get rid of it sample["labels"] = labels[:, 1:len_] return sample # TODO: done multiple times, how to deal with it. with accelerator.main_process_first(): vectorized_datasets[split] = vectorized_datasets[split].map( postprocess_dataset, num_proc=num_workers, desc="Postprocessing labeling", with_indices=True, ) accelerator.free_memory() del generate_labels if data_args.add_audio_samples_to_wandb and "wandb" in training_args.report_to: if is_wandb_available(): from transformers.integrations import WandbCallback else: raise ValueError("`args.add_audio_samples_to_wandb=True` but wandb is not installed. See https://docs.wandb.ai/quickstart to install.") # for large datasets it is advised to run the preprocessing on a # single machine first with ``args.preprocessing_only`` since there will mostly likely # be a timeout when running the script in distributed mode. # In a second step ``args.preprocessing_only`` can then be set to `False` to load the # cached dataset if data_args.preprocessing_only: # TODO: save to disk in this step instead of something else ?? logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}") return # 6. Next, we can prepare the training. # Let's use word CLAP similary as our evaluation metric, # instantiate a data collator and the trainer # Define evaluation metrics during training, *i.e.* CLAP similarity # TODO: allow using another CLAP clap = AutoModel.from_pretrained("laion/larger_clap_music_and_speech") clap_processor = AutoProcessor.from_pretrained("laion/larger_clap_music_and_speech") # TODO add wer with lightweight asr model def clap_similarity(texts, audios): clap_inputs = clap_processor(text=texts, audios=audios.squeeze(1), padding=True, return_tensors="pt") text_features = clap.get_text_features(clap_inputs["input_ids"], attention_mask=clap_inputs.get("attention_mask", None)) audio_features = clap.get_audio_features(clap_inputs["input_features"]) cosine_sim = torch.nn.functional.cosine_similarity(audio_features, text_features, dim=1, eps=1e-8) return cosine_sim.mean() eval_metrics = {"clap": clap_similarity} def compute_metrics(pred): input_ids = pred.inputs input_ids[input_ids==-100] = description_tokenizer.pad_token_id texts = description_tokenizer.batch_decode(input_ids, skip_special_tokens=True) audios = pred.predictions results = {key: metric(texts, audios) for (key, metric) in eval_metrics.items()} return results # Now save everything to be able to create a single processor later # make sure all processes wait until data is saved with accelerator.main_process_first(): # only the main process saves them if accelerator.is_main_process: # save feature extractor, tokenizer and config if model_args.prompt_tokenizer_name is None and model_args.description_tokenizer_name or (model_args.prompt_tokenizer_name==model_args.description_tokenizer_name): prompt_tokenizer.save_pretrained(training_args.output_dir) else: logger.warning("Prompt tokenizer ('{model_args.prompt_tokenizer_name}') and description tokenizer ('{model_args.description_tokenizer_name}') are not the same. Saving only the prompt tokenizer.") prompt_tokenizer.save_pretrained(training_args.output_dir) feature_extractor.save_pretrained(training_args.output_dir) config.save_pretrained(training_args.output_dir) # Instantiate custom data collator data_collator = DataCollatorStableSpeechWithPadding( audio_feature_extractor=feature_extractor, feature_extractor_input_name=feature_extractor_input_name, prompt_tokenizer=prompt_tokenizer, description_tokenizer=description_tokenizer ) # Freeze Encoders model.freeze_encoders(model_args.freeze_text_encoder) # Initialize StableSpeechTrainer trainer = StableSpeechTrainer( model=model, data_collator=data_collator, args=training_args, compute_metrics=compute_metrics, train_dataset=vectorized_datasets["train"] if training_args.do_train else None, eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, tokenizer=feature_extractor, ) if data_args.add_audio_samples_to_wandb and "wandb" in training_args.report_to: def decode_predictions(predictions): audios = predictions.predictions return {"audio": np.array(audios.squeeze(1))} class WandbPredictionProgressCallback(WandbCallback): """Custom WandbCallback to log model predictions during training. """ def __init__(self, trainer, val_dataset, num_samples=8): """Initializes the WandbPredictionProgressCallback instance. Args: trainer (Seq2SeqTrainer): The Hugging Face Seq2SeqTrainer instance. val_dataset (Dataset): The validation dataset. num_samples (int, optional): Number of samples to select from the validation dataset for generating predictions. Defaults to 8. """ super().__init__() self.trainer = trainer self.sample_dataset = val_dataset.select(range(num_samples)) def on_train_end(self, args, state, control, **kwargs): super().on_train_end(args, state, control, **kwargs) predictions = self.trainer.predict(self.sample_dataset) # decode predictions and labels predictions = decode_predictions(predictions) input_ids = self.sample_dataset["input_ids"] texts = self.description_tokenizer.batch_decode(input_ids, skip_special_tokens=True) audios = predictions["audio"] # log the table to wandb self._wandb.log({"sample_songs": [self._wandb.Audio(audio, caption=text, sample_rate=sampling_rate) for (audio, text) in zip(audios, texts)]}) # Instantiate the WandbPredictionProgressCallback progress_callback = WandbPredictionProgressCallback( trainer=trainer, val_dataset=vectorized_datasets["eval"], num_samples=8, # TODO: add to args ) # Add the callback to the trainer trainer.add_callback(progress_callback) # 8. Finally, we can start training # Training if training_args.do_train: # use last checkpoint if exist if last_checkpoint is not None: checkpoint = last_checkpoint # TODO: it's loading trainer from model_name_or_path doesn't work if saving config # elif os.path.isdir(model_args.model_name_or_path): # checkpoint = model_args.model_name_or_path else: checkpoint = None train_result = trainer.train(resume_from_checkpoint=checkpoint, ignore_keys_for_eval=["past_key_values", "attentions"]) trainer.save_model() metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(vectorized_datasets["train"]) ) metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"])) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_eval_samples = ( data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"]) ) metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"])) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Write model card and (optionally) push to hub config_name = data_args.train_dataset_config_name if data_args.train_dataset_config_name is not None else "na" kwargs = { "finetuned_from": model_args.model_name_or_path, "tasks": "text-to-speech", "tags": ["text-to-speech", data_args.train_dataset_name], "dataset_args": ( f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:" f" {data_args.eval_split_name}" ), "dataset": f"{data_args.train_dataset_name.upper()} - {config_name.upper()}", } if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) return results if __name__ == "__main__": main()